
RT-BLE: Real-time Multi-Connection Scheduling
for Bluetooth Low Energy

Yeming Li, Jiamei Lv, Borui Li, Wei Dong
College of Computer Science, Zhejiang University and Alibaba-Zhejiang University Joint Institute of Frontier Technologies

Email:{liymemnets, lvjm, borui.li, dongw}@zju.edu.cn

Abstract—Bluetooth Low Energy (BLE) is one of the popular
wireless protocols to build IoT applications. However, the BLE
suffers from three major issues that make it unable to provide
reliable service to time-critical IoT applications. First, the BLE
operates in the crowded 2.4GHz frequency band, which can
lead to a high packet loss rate. Second, it is common for one
device to connect with multiple BLE Peripherals, which can
lead to severe collision issue. Third, there is a long delay to
re-allocate time resource. In this paper, we propose RT-BLE:
a real-time multi-connection scheduling scheme for BLE. We
first formulate the BLE transmission latency in noisy RF
environments considering the BLE retransmission mechanism.
With this, RT-BLE can get a set of initial connection parameters.
Then, RT-BLE uses collision tree based time resource scheduling
technology to efficiently manage time resource. Finally, we
propose a subrating-based fast connection re-scheduling method
to update the connection parameters and the position of anchor
points. The result shows RT-BLE can provide reliable service and
the error of our model is less than 0.69%. Compare with existing
works, the re-scheduling delay is reduced by up to 86.25% and
the capacity is up to 4.33× higher.

I. INTRODUCTION

Bluetooth Low Energy (BLE) has become one of the most

popular wireless protocols to implement IoT applications,

because of its cheap, low-energy, and wide adaptation nature.

According to the ABI research [1], the shipment of BLE

devices will reach 1.6 billion in 2023. In addition, with the

growth of the Internet of Things (IoT), it is common for one

central node to connect with multiple remote peripherals via

BLE. For example, in a smart home application [2], a BLE

gateway connects with a remote temperature sensor node to

remotely control the air-conditioner and heater. Among all

these BLE-based IoT applications, some connections have crit-

ical latency requirements, e.g., the fire alarms [3], [4], health

care [5], [6], and structural health monitoring (SHM) [7], [8].

However, the existing experiment [9], [10] shows native

BLE failed to provide real-time and reliable service for those

time-critical applications because of packet loss and collisions

among multiple connections. Despite their contributions, these

works are still far from real-time transmission guarantee in

practice, especially in multi-connection scenario. Addressing

this problem, however, raises a number of challenging issues.

First, how to build an accurate model for real-time transmis-

sion in noisy RF environment. There are existing models for

predicting BLE transmission latency [11]–[13]. However, these

This work is supported by the National Natural Science Foundation of
China under Grant No. 62072396 and the National Youth Talent Support
Program. Jiamei Lv and Wei Dong are the corresponding authors.

approaches are usually based on the measurement of average

round-trip-time (RTT) for application-layer data transmissions,

ignoring the underlying BLE retransmission mechanisms.
Second, how to efficiently schedule multiple connections to

avoid collisions and ensure the latency requirements. A full

parameter space would inevitably lead to a large computing

overhead at the Central node. BLEX [10] proposes an online

multi-connection scheduling method. But it is failed to meet

real-time latency requirements because it can only manipulate

part of the connection parameters.
Third, how to rapidly perform connection re-scheduling.

More specifically, changing the position of the anchor point

and updating two connection parameters of connection interval
and the length of connection event. This is important to match

the traffic dynamics. The existing method suffers from a long

mandatory delay, i.e., 6 connection intervals, which hampers

the transmission performance in highly dynamic conditions.
To address these three challenges, we present RT-BLE,

a real-time multi-connection scheduling scheme for BLE.

To the best of our knowledge, this is the first work that

explicitly considers the problem of real-time transmission over

multiple BLE connections. First, we propose an accurate BLE

transmission model which precisely presents the underlying

BLE retransmission mechanism. The model indicates the

worst-case transmission latency occurred when packet losses

happened in the last data fragment. With this model, RT-BLE
can estimate how much time resource is required for each

connection. Second, we propose collision tree based time re-
source management technology to efficiently schedule multiple

connections. The collision tree shows the relationship of time

resource (i.e., collided or not). By searching the collision

tree, RT-BLE can find the optimal resource allocation for

each connection. Finally, we propose a novel subrating-based
fast connection re-scheduling method. It is designed based

on connection update and connection subrating procedures in

conjunction, in which the connection subrating allows users

to coarsely adjust connection parameters without extra delay.
We implement RT-BLE on nRF52840 platform [14] and

NimBLE protocol stack [15]. The experiment results show

RT-BLE can provide reliable service for time-critical IoT

applications even with a high packet loss rate, and the error of

our model is less than 0.69%. Compared with existing works,

RT-BLE can reduce up to 86.25% re-scheduling delay and has

up to 4.33× higher capacity. Our contributions are three-fold:

• We propose a timeliness model in noisy RF environment

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

29
00

6

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

Connection Interval CI

MSSIFS Connection EventData Exchange

Anchor points

Central Tx Peripheral Tx Peripheral Tx

Minimal event length

1 2

preempts1 2 blocks 12

time

time
CE

Swap out

Periph. 1

Periph. 2

Fig. 1: Timing diagram of BLE link-layer scheduling.

considering the BLE retransmission mechanism. Then

it is used to allocate proper time resource to each

connection according to their requirements.

• We propose a novel collision tree based resource man-

agement technology to efficiently allocate time resource

for each connection.

• We have implemented RT-BLE using off-the-shelf BLE

chip and open source our code1. We conduct extensive

experiments to evaluate the performance of RT-BLE.

II. RELATED WORK

Time resource scheduling is quite popular for wireless

protocols. A large number of works has been proposed

for different link-layer protocols, such as pTunes [16] for

IEEE 802.15.4, AdaptiveLoRa [17] for LoRa protocol, and

[18]–[22] for TSCH protocol. For BLE, numerous works

has been done to optimize the performance of neighbor

discovery communication [23], [24], cross-technology com-

munications [25], and indoor localization [26], [27]. There are

already some works that provide models for connection-based

BLE communication performance. The BLEach [28] proposed

an IPv6-over-BLE stack and formulate the latency in single

connection scenario and a multi-hop version is proposed in

[29]. Based on this, [9], [11]–[13] introduce a similar BLE

transmission model in noisy RF environment. It asks the

node to measure the average RTT of an application packet

with maximum payload in advance. Then check how many

fragments are needed for the current data packet and speculate

the latency. However, this method works in application-layer

and ignores the underlying details of BLE link-layer. The

RT-BLE carefully model the transmission latency of BLE with

considering the complex retransmission mechanism. Some

works focus on managing time resource in single-connection

scenario [30], [31] and multi-connection scenario [32], [33].

Park et al. propose BLEX [10] for online multi-connection

scheduling. It allocate time resource for each connection

according to their historical usage. But BLEX is failed to

guarantee real-time transmissions, especially when the ap-

plication requirements changes frequently. This is because

the connection rescheduling of BLEX suffers from a long

mandatory delay introduced by Bluetooth specification. Be-

sides, BLEX uses a greedy policy to allocate the time resource,

which makes the system capacity low. To solve these, RT-BLE
proposes subrating-based fast connection rescheduling method

and collision-tree based resource management technology.

III. BLE BACKGROUND

In this section, we introduce the necessary preliminary

knowledge of BLE. Sec. III-A introduces the BLE link-layer

1https://github.com/sada45/RT-BLE

Central Tx Peripheral Tx
conn_upd

Connection Interval
Instant

Transmit
Window Offset

Transmit
window size

new Connection
Interval

time
Fig. 2: Connection update procedure.

CE w/ data CE w/o data Sleep CE

CESubrate factor 𝑠𝑓 = 4 𝑇CI Continuation Number = 1

Subrate base event

Fig. 3: Connection subrating feature.

scheduling. Sec. III-B introduces the connection update and

connection subrating procedures.

A. BLE link-layer scheduling

Devices in a BLE connection have two roles: the Central and

Peripheral, or the Master and Slave with old fashion names.

Fig. 1 shows an example of BLE link-layer multi-connection

scheduling. The Central and Peripheral will synchronize their

clock during connection establishment. Therefore, both of

them will turn on their radio periodically, and start a con-
nection event (CE). The start of each connection event are

called anchor points, and the interval between two consecutive

anchor points is connection interval (CI), we denote it as

tCI. The CI is an integer multiple of 1.25ms and the value

should between 7.5ms and 4000ms. During each CE, the

Central and Peripheral will exchange data at least once for

data transmission or connection keep-alive. The Central will

first sends an empty or data packet to the Peripheral. Then the

Peripheral will sends a response after inter-frame size (IFS)

time TIFS, and the data exchange will end after minimum

subevent space (MSS) time TMSS. The IFS time is 150us and

the MSS time should be no less than 150us. Each CE can

contain multiple data exchanges depending on how much data

the Central and Peripheral want to send, but the length should

not exceed the max connection event length tCE.

In multi-connection scenario, there are two types of colli-

sions that can occur. First, while scheduling the connections,

the BLE link-layer usually reserves a minimal CE length for

each CE to ensure it can contain one or more data exchanges.

However, the minimal CE length of multiple connections can

overlap with each other. A common policy is to schedule the

connection with the least last schedule time, and we call this

connection preempts the others (e.g., Peripheral 1 preempts

Peripheral 2 in Fig. 1). Second, if there are anchor points of

other connections positioned between two consecutive anchor

points of the current connection, the current CE is blocked and

the CE length is shorter (e.g., Peripheral 2 blocks Peripheral 1

in Fig. 1). To identify each CE, the BLE connection has a

16-bit CE counter. It starts from 0, and it should always be

plus 1 no matter the CE is normally performed or preempted

by other connections.

B. Connection Update and Connection Subrating

The Bluetooth specification designs the connection update

procedure for connection re-scheduling (Fig. 2). The Cen-

tral starts the procedure by sending the conn upd control

packet to the Peripheral, which includes the new connection

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

Central

Host

Application

Collision-tree based Resource Manager

Link Layer & Physical Layer

AP
P

da
ta

Resource allocation command

Retransmission number

Initial CI & Slots number
Initial connection Params Calculator

Connection Subrating
Handler

Ctrl PDU

Cl & Offset & Slots number

Subrate factor
& base event Window offset

Application

AP
P

da
ta

Resource
allocation
command
RT-BLE
Agent

Retransmission Calculator

L2CAP

Resource
request

Controller

Controller

Connection Subrating
Rescheduling Calculator

L2CAP

Peripherals

Host

Connection Update
Reschedule Calculator

Connection Update
Handler

Ctrl PDU

Fig. 4: System overview of RT-BLE.

parameters and the offset and size of transmit window. There

is a mandatory delay between the control packet being sent

and new parameters are applied, which is instant × tCI and

the instant should be larger or equal than 6. After that, the

Central will delay transmit window offset and transmit a packet

anywhere during transmit window size time. The transmit

window offset/size must be an integer multiple of 1.25ms.

By tweaking the transmit window offset/size, the Central can

reposition anchor points. However, its delay is considerable,

especially when the CI is large.

The connection subrating is proposed in Bluetooth spec-

ification v5.3, which allows the connection to skip some

CEs (Fig. 3). The Central and Peripheral always wake up

at the subrate base events to exchange data or keep-alive

packets, and the number of CEs between two consecutive

base events is called subrate factor. Besides the base event,

the nodes can exchange data in other CEs if at least one

of the previous continuation number CEs has data packets

transmitted. To simplify, we call subrate base events as base

CEs and other CEs as non-base CEs in the rest of the paper. To

change these three subrating parameters, the Central transmits

a subrate ind packet to the Peripheral, and it will reply a

link-layer ACK immediately. After that, the new subrating

parameters are applied. Although the delay to apply the

new subrating parameters is small, the granularity is coarse,

especially with a large CI.

IV. SYSTEM OVERVIEW

In this section, we discuss the design goals of RT-BLE and

overview our system design.

A. Design Goals

• Latency-aware. The timeliness is recognized as a critical

performance metric of IoT applications and the require-

ments can change at runtime. RT-BLE should allocate

enough and proper time resource for each connection.

• High capacity. While ensuring the latency requirement

of each connection, RT-BLE is supposed to connect as

many connections as possible.

• Light-weight. The computational resource on embedded

devices is quite limited. RT-BLE should be lightweight

enough for modern BLE chips.

• Fast re-scheduling. The traditional method suffers from

a high delay. RT-BLE is supposed to achieve a fast

connection re-scheduling method.

B. RT-BLE Architecture

In Fig. 4, we show the birds-eye view of RT-BLE’s system

architecture. Here, one Central can simultaneously connect

with multiple Peripherals. Each Peripheral has two work

modes: normal and critical mode. Users can set the percentile

worst-case latency requirements for each mode (e.g., the

worst-case latency of 95% transmissions is less than 200ms).

Generally, the normal mode has less strict latency requirements

to save energy. Once there are exceptions in the sensor data,

nodes can quickly enter the critical mode, which has more

strict latency requirements. The RT-BLE has eight modules.

Six of them are located in the BLE host of the Central, away

from the controller, which includes the link-layer. Therefore,

RT-BLE will not interfere real-time tasks in the link-layer and

normal operations of BLE. The communication of Central and

Peripheral is through the Logical Link Control and Adaptation

Protocol (L2CAP). Before they start data transmission, the

application layer sends a resource allocation command to

RT-BLE, which gives the basic information of application re-

quirements, including the data packet length and the percentile

worst-case latency requirement. RT-BLE uses a centralized

way to schedule time resource. So, the RT-BLE agent on the

Peripheral translates the resource allocation command into a

resource request to the Central. Then, RT-BLE goes through

the following modules to allocate resource and apply the

corresponding parameters:

Retransmission calculator. Given the percentile latency

requirement, this module calculates how many retransmissions

are required to cover the specified number of data trans-

missions. The packet loss rate can be given through prior

measurements or dynamically obtained from the link-layer.

The details of this module are in Sec. V.

Initial connection parameters calculator. This module

estimates the worst-case transmission latency and preliminarily

calculates the required CI and the length of the CE. We call

this set of parameters as the initial connection parameters set.

The initial CI is taken as the largest value that meets the

latency requirements, so the initial connection parameters set

is the most energy-efficient one. The details are in Sec. VI-B.

Collision tree based resource manager. This module will

tweak the initial parameters and checks whether there is

enough time resource for the connection. If there are no

enough resource, RT-BLE has to refuse the resource allocation

command or request. Details are introduced in Sec. VI-C.

Connection subrating/update re-scheduling calculator.
RT-BLE uses connection subrating and connection update to

re-schedule the connections, and these two modules calculate

the parameters for each procedure. The details of the param-

eters calculation is presented in Sec. VI-D.

Connection subrating/update handler. These two handlers

actually perform connection subrating and connection update

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Calculating retransmissions number

Input: Packet loss rate P ; The percentile of transmissions p;

Number of data PDUs n;

Output: Number of retransmissions nre;

1: pre ← (1− P)n; c ← pre; nre ← 0
2: while pre < p do
3: nre ← nre + 1
4: c ← c× P × n+nre−1

nre

5: pre ← pre + c
6: end while
7: return nre

procedures, respectively. After the procedures are finished, the

connection re-scheduling is considered as done.

V. BLE TIMELINESS MODELING

Although there has been some works that formulate the

transmission performance of BLE in noisy RF environment,

they ignore the retransmission mechanism of the BLE. In

these section, we start with the data transmission latency with

ideal channel. Then we investigate the BLE retransmission

mechanism and introduce the packet loss into our model. After

that, since RT-BLE uses connection subrating to achieve fast

connection re-scheduling, we discuss the impact of connection

subrating to the transmission latency.

A. Data transmission time

We set the Central and Peripheral have lc an lp bytes data to

transmit, respectively. The L2CAP layer will add a two bytes

length field and fragment the data into multiple protocol data

units (PDU). The maximum length of each PDU is 247 bytes.

We denote the number of PDU of Central and Peripheral as

nc and np, respectively. The length of the last PDU can be

less than 247 bytes, we denote them as llc and llp for the

Central and Peripheral, respectively. The transmission time for

each PDU with l bytes payload is denoted as tPDU(l), which

includes the time to transmit the preamble (1B), access address

(4B), link-layer-header (2B), L2CAP header (2B), CRC code

(3B), and the payload. If l = 0, there is no need the transmit

the L2CAP header. To ensure each CE can start exactly at

the anchor point, the BLE link-layer will start executing the

corresponding link-layer task slightly before the anchor point,

we call this the start-up time, denoted as Ts. It is used for

data preprocessing and radio ramping up (e.g., 213us for using

NimBLE and nRF52840). Therefore, the total time for data

transmission is tdata = Ts + max(nc, np) × (TIFS + TMSS) +
tPDU(llc) + tPDU(llp) + tPDU(247)× (nc + np − 2).

B. Packet loss

For BLE, if there is a data packet lost, the link-layer will

retransmit the packet until it is successfully received. There-

fore, the worst-case transmission latency becomes unbounded

with packet loss. The RT-BLE allows users to set the percentile

worst-case latency of each connection (p, tddl), where the p is

a percentage between 0 and 1. tddl is the latency requirements.

That means p of the data transmissions’ worst-case latency is

lower than tddl. To achieve this requirement, we first determine

how many retransmissions are needed to cover p data trans-

missions. We denote the packet loss rate as P . If the Central

or Peripheral wants to transmit n PDUs, the possibility that

all of them are correctly received without any retransmissions

is (1 − P)n. If there are nre packet loss occurred before all

data is correctly received, the node has totally transmitted

n+ nre PDUs since the number of retransmissions should be

same as the number of packet losses. The last one should

always be correctly transmitted, and the other PDUs can

include errors, so the probability of transmitting n PDUs with

nre transmissions is (1− P)nPnre
(
n+nre−1

nre

)
, where

(
n+nre−1

nre

)
is the combination calculator. Therefore, the percentage of

transmissions that include n data PDUs and retransmission

number is less or equal to nre is:

pre(nre) = (1− P)n
nre∑
i=0

P i

(
n+ i− 1

i

)
. (1)

We need to find the minimal nre that satisfy pre(nre) >=
p. However, directly getting the numerical solution is too

complex for embedded MCUs. The retransmission calculator

uses an iterative algorithm. First, we simplify the Eq. 1 to:

pre(nre) = (1− P)n
nre∑
i=0

P i (n+ i− 1) · · · (n+ 1)n

i!
. (2)

We denote the part inside the summation as ci, and ci+1

can be presented by ci iteratively:

ci+1 = P
n+ (i+ 1)− 1

i+ 1
ci. (3)

Based on Eq. 3, we propose an iterative algorithm to get the

nre. The pseudo-code is shown in Alg. 1. With this algorithm,

we can get the number of retransmissions needed by Central

(nrec) and Peripheral (nrep).

For now, we have determined the number of retransmissions.

However, when these packet losses occur can result in quite

different latency. We investigate the retransmission mechanism

of BLE and classify all packet loss cases into the following

three scenarios: (1) One loss during CE. If there is only

one packet loss during the whole data transmission process,

the transmitter will retransmit the lost PDU at the next data

exchange and will not lead to any extra CE to retransmit

this PDU. (2) Two consecutive losses in one CE. If there

are two consecutive packet losses in a same CE, it will be

terminated and the remaining data transmissions should wait

until the next CE. So, some extra CEs are needed for data

retransmissions. The max number of two consecutive packet

losses is �nrec/2� + �nrep/2�. Since there should be at least

two data exchanges performed before the CE is terminated

by packet loss, the maximum number of extra CEs should be

no more than half of the data exchange number. (3) One or
more packet loss at the last data PDU. Before performing

the last data exchange, both the Central and Peripheral have

no more data to send. So, they both set the more data flag

at the last two link-layer PDU headers to 0 and will turn off

their radio after this data exchange. If any of the two PDUs is

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

lost, it should be retransmitted in the next CE. Therefore, the

maximum number of extra CEs caused by the packet loss in

the last data exchange is max(nrec, nrep), which should always

larger or equal than the extra CE number in the former two

situations. In conclusion, the worst-case latency occurs when

all packet losses are happened on the last data PDU. The time

of the data exchange which contains the last retransmission

tlast, which includes the time for retransmission PDUs and

one or zero empty PDU.

C. Impact of connection subrating

The RT-BLE uses connection subrating to achieve fast

connection re-scheduling, and the continuation number can be

set to 0 or 1 according to different requirements. The detail of

the subrate-based fast connection re-scheduling is presented in

Sec. VI-D. When the continuation number is 0, the maximum

number of extra CEs is:

n(1)

eCE = sf ×max(nrec, nrep), (4)

where the sf is the value of the subrate factor. If the continua-

tion number is 1, the Central and Peripheral can perform data

exchanges in nlim CEs (including the base and non-base CE)

after each base CE. The value of nlim will be given during the

resource allocation, and its detail is presented in Sec. VI-C.

During the data transmission, there would be max(nc, np)
times data exchanges. The remaining retransmissions happen

for the last data PDU in the worst-case. We denote the

number of remaining retransmissions of Central and Peripheral

in extra CEs as ncrem and nprem, respectively. They can be

presented as ncrem = max(nc + nrec − max(nc, np), 0) and

nprem = max(np + nrep −max(nc, np), 0).
There are three situations while retransmitting these packets.

First, if the ncrem = nprem, both two roles can transmit a packet

in the nlim CEs after each base CE. If ncrem and nprem are 0,

then the number of extra CEs is 0, Otherwise, the number is:

n(2)

eCE = sf×
(
1 +

⌊
ncrem − 1

nlim

⌋)
+mod (ncrem−1, nlim). (5)

Second, if ncrem > nprem, the first nprem data exchanges can

be preformed in non-base CEs because both the Central and

Peripheral have data for transmission. However, the Peripheral

will only turn on its radio on base CE after the npremth

CE since it neither has data to transmit nor received a

valid data packet from the Central. The Central will still

retransmit packets at non-base CEs, although it can not receive

the acknowledgment. Therefore, if the last retransmission of

Central is at a non-base CE, it has to retransmit the packet

one more time at the next base CE. The maximum number of

extra CEs in this situation is:

n(3)

eCE = sf ×
(
1 +

⌈
ncrem − 1

nlim

⌉)
. (6)

The third situation is when ncrem < nprem. The first ncrem

data exchanges can be performed at the non-base CE. As for

the last nprem−ncrem PDUs, the Central does not have more

data to transmit and has not received valid data PDUs from the

Peripheral, so it will only start a data exchange in subsequent

base CEs. Therefore, the Peripheral can only retransmit the

remaining PDUs in base CEs, and the maximum number of

CEs under this situation is:

n(4)

eCE = sf ×
(
1 +

⌊
ncrem − 1

nlim

⌋
+ nprem − ncrem

)
. (7)

In conclusion, The number of extra CEs neCE that required

for data retransmission can be calculated from the Eq. 4, and

Eq. 5-7 in different situations.

VI. RT-BLE DESIGN

In this section, we first introduce some necessary concepts

used in RT-BLE. Then, introduce how to use the model above

to get the initial connection parameters. After that, we present

the collision tree based time resource management technol-

ogy. Finally, we introduce how to achieve fast connection

re-scheduling with connection subrating feature.

A. Basic Concept of RT-BLE

The main purpose of RT-BLE is to efficiently manage the

time resource of the Central. Existing works usually consider

time resource to be continuous, such as the BLEX [10] and

BLEach [28]. However, we find that lots of parameters of BLE

must be integer multiple of 1.25ms, such as the CI, transmit

windows offset. The reason is the Bluetooth specification sets

the time for a single Tx/Rx slot to 0.625ms and the minimal

time for a Tx/Rx cycle is 1.25ms. Slicing the time resource

into slots can improve the efficiency of resource allocation,

especially on embedded devices. Furthermore, we find it is

unnecessary to schedule the time resource with the 1.25ms

slot because it is too short for Central and Peripherals to

efficiently transmit any data, we can choose a longer unit to

further reduce memory and computational resource overheads.

Therefore, RT-BLE divides the time resource into virtual slots.

Each length of virtual slot is an integer multiple of 1.25ms

and the length of CI and CE are integer multiples of virtual

slots. The length of the virtual slot is a trade-off between the

resource management accuracy and computational overhead.

We set the length of the virtual slot to four slots (5ms) since it

is the minimum length to ensure the Central and the Peripheral

can both transmit a PDU with maximum payload. Therefore,

at least one data exchange can be guaranteed in each virtual

slot. It is a reasonable length and also NimBLE takes the 5ms

as the minimal CE length.

To serve the subrating-based fast connection re-scheduling

(details in Sec. VI-D), we first fix the CI to 10ms, which

is equal to two virtual slots and slightly over the minimal

CI (7.5ms). Then, we use the subrate factor sf to “mimic”

different CIs . For example, the sf is 4 to mimic 40ms CI.

We call the mimicked CI as equivalent CI, denoted as teCI.

However, in resource allocation, we can allocate s number of

virtual slots to each CE. There would be no problem if the s
is less or equal to 2. Otherwise, the length of CE exceeds the

10ms native CI. To solve this, RT-BLE will set the continuation

number to 1 and nlim = �s/2� when s > 2. So, the nodes can

exchange data in nlim CEs every teCI.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

0 1 2 3 4 5 6 7
Slot index

Periph.1 slots Periph.2 slots Empty

Base tick
Fig. 5: An example of virtual slot table. Two Peripherals with

20ms and 40ms CI are connected.

4 Existing connections New connection

0 1 2 3 4 4
Virtual slot table

0

5

12
Virtual slot table

(a) Intuitive

(b) Optimal

34 4 4 4

4

Fig. 6: Different time resource management policy.

To manage multiple connections, RT-BLE uses a virtual

slot table to store the occupancy of each virtual slot. The

length of the virtual slot table is the least common multiple

of all connections’ equivalent CIs. Therefore, one virtual

slot table contains the complete time resource scheduling.

However, the length of the virtual slot table will explode if

the equivalent CIs are mutually prime. It would be a great

threat for resource-constraint devices. To solve this, we borrow

the design in BLEX [10]. It specifies that the CI must be

2n×1.25ms, where n is an integer between the 3 and 11.

In RT-BLE, we set the subrate factor to sf = 2n, where the

0 ≤ n ≤ 8, n ∈ N . The equivalent CI can cover the range from

10ms to 2560ms. An example of virtual slot table is shown in

Fig. 5. The equivalent CI of Peripheral 1 and Peripheral 2 are

40ms and 20ms, respectively. The start time of the first slot is

the base tick, and it should be updated once a virtual slot table

is finished. The offset is the slot index where the first slot of

the connection is, denoted as off (i.e., 0 for Peripheral 1, 1 for

Peripheral 2). It is worth noticing that, the length of the virtual

slot can be 2n×1.25ms, n ∈ N and there is no conceptual

change required for our policy (details in Sec. VI-C).

B. Initial Connection Parameters Calculator

With the percentile worst-case latency requirement (p, tddl),
this module calculate the most energy-efficient initial connec-

tion parameters. To be more straightforwardly, to find a set

of connection parameters with the longest equivalent CI while

meeting the latency requirement. The number of extra CEs for

retransmission is fixed once given the data packet length and

requirement. To increase the equivalent CI, the only thing we

can do is to allocate enough virtual slots to the connection so

that all the data PDUs can be transmitted in one equivalent

CI. Therefore, we set the initial number of virtual slots to

sini = �tdata/5ms�. The end-to-end latency consists of waiting

time, data transmission time, and retransmission time. The

waiting time is the time from the data packet enqueued into

Tx buffer until it starts to be transmitted, and the maximum

value is teCI. The end-to-end latency should be less or equal

to the latency requirement:

te2e=(sf + neCE)× 10ms + tlast ≤ tddl. (8)

Here, all the variables except the sf are fixed. The sf is a

power number of 2, between 2 and 512. We choose the largest

sf that satisfy Eq. 8 as the initial subrate factor sfini.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[1,0] [1,1]

[2,0]

[3,0] [3,2] [3,1] [3,3][3,4] [3,6] [3,5] [3,7]

[2,2] [2,1] [2,3]

[4,0] [4,8] [4,4] [4,12] [4,2] [4,10] [4,6] [4,14] [4,1] [4,9] [4,5] [4,13] [4,3] [4,11] [4,7] [4,15]

0 0 0 1 0 0 2 1 0 1 0 1 0 0 2 1

Virtual slot Table

Slot Index

Occupied (first) Partly/Fully blocked by child

Blocked by parent Occupied virtual slots

Occupied (subsequent)

1 12

3 34

n nth connection

Base tick
…

Fig. 7: An example of collision tree. It contains with four

connections with different application requirements.

C. Collision-tree based Resource Management Module
An intuitive way to manage time resource is using a greedy

policy that merge all connections at the beginning of the virtual

slot table, like the BLEX [10] does. However, the capacity is

low because this policy does not consider the periodic nature

of BLE. Fig. 6(a) gives an example of that. There are already

four connections with 80ms equivalent CI. If now we have a

new connection with 20ms equivalent CI, there will be a denial

of service (DoS) to this connection request. A better way to

allocate virtual slot is shown in Fig. 6(b). To find the optimized

time resource allocation, we propose collision tree based time

resource management technology. An example of the collision

tree is shown in Fig. 7. Each node in collision tree represents a

resource block and the level of the tree is from 1 to 9. We use

[lv, off] to present a resource block, where the lv is the level

in the collision tree and the interval between two consecutive

virtual slots in it is 2lv×5ms (sf = 2lv−1). The off means

the offset in virtual slot table, and each connection can occupy

one or more resource blocks with continuous offsets. With the

collision tree, we can easily find out the relationship of all

resource blocks. More specifically, if any of the node’s parent

or child nodes are occupied, the corresponding resource block

collides with others and can not be allocated to any connection.
Although there are some works that use a similar design

to manage the time resource in IEEE 802.15.4 [22], there are

still two major issues that need to be solved for BLE:
1) How to assign multiple continuous resource-block for
one connection: Existing works only assign one resource

block to each connection. Therefore, to transmit large data,

it has to assign a resource block with a small lv. For

BLE, the more energy-efficient way is to allocate s resource

blocks with continuous offset and a large lv. For ease of

searching resource, the virtual slot table contains the number
of continuous free virtual slots (NCF) for each virtual slot.

In Fig. 7, the gray block in the virtual slot table means this

virtual slot is occupied and the NCF should be 0. Otherwise,

the NCF shows how many virtual slots are available after the

current virtual slot (including the current one). Therefore, to

check whether a resource block can be the first one among the

s resource blocks allocated for this connection, we just need

to confirm that the NCF of all virtual slots in this resource

block are greater or equal than s. Once a new virtual slot

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Find resource in collision tree

Input: The initial resource blocks number sini and level lvini;

Output: Level in the collision tree lv; Offset in virtual slot

table off ; The number of resource blocks s;

1: s ← sini

2: for lv from lvini to 1 do
3: {nleft, nright} ← get free number(lv)

4: if nleft≥nright or (nright−nleft=1 and mod(s, 2)=1) then
5: {lv, s, off} ← search from left subtree()

6: else
7: {lv, s, off} ← search from right subtree()

8: end if
9: if find nodes then

10: return {lv, s, off};

11: else
12: s ← �s/2�
13: ensure latency requirement(lv − 1, s)

14: end if
15: end for
16: return No enough resource left;

is occupied, it needs to update the NCF backward until it

encounters another occupied virtual slot or reaches the leftmost

side of the repeating unit. The new NCF starts from 0, and

once moves backward one virtual slot, it should add one.

2) How to find suitable resource blocks: The initial connec-

tion parameters calculator gives the initial subrate factor sf
and the initial virtual slot number sini. So, we start searching

at the level lvini=sfini+1 to find sini continue resource blocks.

Because our subrating-based fast connection re-scheduling

method (details in Sec. VI-D) can achieve lower delay if the

offsets of the current resource block and the target one are both

odd or even. The offset of the resource blocks is even in the

left subtree and is odd in the right one. When the connection

tries to enter the critical mode, we expect that the first one

of new resource blocks is in the same subtree as the current

resource block. Therefore, we should balance the number of

free resource blocks in the two subtrees. To do so, if there are

more or equal free resource blocks in the left subtree or the

number of free resource blocks in the left subtree is one less

and sini is an odd number, we start searching for free resource

from the left subtree. Otherwise, we first search in the right

subtree then the left one. Within the subtree, we search for

resource blocks in the order they appeared in the tree. For

example, in Fig. 7, the connection 1 has lvini=4 and sini=2,

so it take the [4, 0] and [4, 1]. The connection 2 has lvini =4
and sini=1. Since there same number of free resource blocks,

we start searching at the left subtree and find the [4, 8]. The

connection 3 and 4 both search from the left one and takes

the [3, 4] and [3, 2] as their first resource blocks, respectively.

With this searching order, we can make full use of those virtual

slots which are belong to partly occupied resource blocks and

reserve as many resource blocks with low lv as possible. If

there is no enough resource blocks in lvini, we will move to the

upper level, half the number of virtual slots, and check whether

this new resource block can ensure the latency requirement.

0 1 2 3 4 5 6 7
𝑡base+15 𝑡base+35

Virtual slot table

𝑡base+5

Current resource block Target resource block

Fig. 8: Subrating-based fast connection re-scheduling to move

the anchor point by an even number of virtual slots.

Central Ctrl PDU Peripheral link-layer ACK

time
CE=𝑐𝑛𝑡𝑟

subrate_ind: base CE=𝑐𝑛𝑡𝑟cur, 𝑛sf = 1 ACK: subrating done

1 2 3 4

CE=𝑐𝑛𝑡𝑟 + 6

5 6…60ms 5ms

1 2

upd_ind: win_offset=5ms, win_size=0 ACK: connection update start3 4

subrate_ind: base CE=𝑐𝑛𝑡𝑟new, 𝑛sf = new 𝑛sf ACK: rescheduling done5 6

Fig. 9: Subrating-based fast connection re-scheduling to move

the anchor point by an odd number of virtual slots.

This procedure will repeat until we find resource or get to the

top of the tree. The pseudo-code is shown in Alg. 2.

To reduce the memory consumption, RT-BLE stores the

nodes in each level as an array. The order of nodes in the array

is same as the order in which they appear in the tree. Each

node is stored as a 8-bit number. Three bits are used to indicate

the state of the node (e.g., free, occupied, etc.). The other five

bits are used to store the corresponding connection handle.

To converse between the offset of the resource block and the

corresponding node index in the array We find that there is

a reverse-bits relationship between the offset of the resource

block and the corresponding node index. For example, the

index of node [3, 6] is 011b and the offset of the resource

block is 110b. Therefore, we can achieve the conversion with

O(1) complexity. The memory consumption for the collision

tree is 1,022B. As for the virtual slot table, it stores the 16-bit

NCF of each virtual slot and the memory consumption is 1KB.

It is worth mentioning that, even if the length of virtual slot

is set to the minimal 1.25ms, the total memory consumption

is 8,185B, which is totally acceptable for modern BLE chips

(e.g., nRF52840 has 256KB RAM).

D. Subrating-based Fast Connection Rescheduling Method

Then, we propose a fast connection re-scheduling method

based on connection subrating feature since the connection

subrating can update its parameters without extra delay.

If the length of the anchor point movement is an even

multiple of virtual slots, we can achieve it by changing the

base CE of the connection. To change the base CE, Central

should calculate the counter of new base CE and send it in a

subrate ind PDU. The connection management module gives

s resource blocks and we take the first one as the target

[lv, off]. Then, RT-BLE calculates the start time of virtual

slots in the target resource block and chooses the closest virtual

slot after the current base CE as the target virtual slot. After

that, it calculates the time difference tdiff between current base

CE and the start time of the target virtual slot, and the CE

counter difference is cntrdiff = tdiff/5ms. Therefore, the new

base CE counter is cntrnew = cntrcur + cntrdiff, where the

cntrcur is the counter of current base CE. When the parameters

have been calculated, Central will send subrate ind to the

Peripheral, the Peripheral reply a link-layer ACK, and this

connection subrate procedure is considered as done. Fig. 8

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000
Latency (ms)

0

0.2

0.4

0.6

0.8

1
C

D
F

RT-BLE
TL-BLE
BLEX

(a) 8 nodes, 100B data, 10% loss

0 200 400 600 800 1000
Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

RT-BLE
TL-BLE
BLEX

(b) 8 nodes, 100B data, 40% loss

0 200 300 400 600 800 1000
Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

RT-BLE
TL-BLE
BLEX

(c) 4 nodes, 1024B data, 10% loss

0 200 300 400 600 800 1000
Latency (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

RT-BLE
TL-BLE
BLEX

(d) 2 nodes, 1024B data, 40% loss

Fig. 10: End-to-end data transmission latency with different packet size and packet loss rate.

gives an example that the connection switch from [3, 1] to

[2, 3]. The start time of current base CE is tbase+5. The closest

virtual slot after it is the slot 3 and its start time is tbase+15.

So, the time difference is 10ms and new counter is cntrcur+1.

If the length of the anchor point movement is an odd

multiple of virtual slots, we should first move one virtual

slot with connection update procedure and than use the

method described above to move even number of virtual slots.

However, the connection update procedure suffers from a

mandatory delay of 6×sf× tCI. The key idea to solve this

problem is we change the subrate factor to 1 before starting

connection update procedure. Therefore, the mandatory delay

is shirked to 60ms, and will not increase with the equivalent

CI. Fig. 9 shows the details. At the beginning, the Central

will transmit two control PDUs. The first one is subrate ind,

which changes the subrate factor to 1. The second one is

upd ind, which set the transmit window offset to 5ms and the

window size is 0. It can move the anchor point to the right

for one virtual slot. Since the control packets are relatively

short, they can all be transmitted in one CE. The connection

update procedure starts after the upd ind is transmitted. At the

last CE of connection update procedure, the Central transmits

another subrate ind PDU to move the anchor point by an

even multiple of virtual slots and update subrate factor. The

re-scheduling is done after the acknowledgment.

VII. PERFORMANCE EVALUATION

To evaluate the performance of RT-BLE, we implement it

with RIOT OS [34] and NimBLE protocol stack [15]. The

modules in the BLE host are implemented as a system module

in RIOT OS. The other two modules in the controller are in

ble ll conn.c. The experiment platform is the popular Nordic

nRF52540DK board with a build-in nRF52840 chip [14]. This

chip uses a 32768Hz crystal, so we take 164 ticks (5004us) as

the length of virtual slot. The experiment is performed in an

office. To make the packet loss rate controllable, we set the

transmit power to the max value to cancel as much interference

from the real world as possible. Then we manually inject

packet loss into the link-layer with the target loss rate.

For comparison, we implement BLEX [10] and Timeliness

BLE (TL-BLE) [11] with NimBLE. We make two modifica-

tions to the BLEX: (1) For CE length prediction, we only

use the history CEs with data transmissions. (2) We use our

model with ideal channel to set the CI and the CE length

before establishing the connections and make sure the initial

CE length is larger than 5ms so that the native NimBLE can

establish connections normally. For the TL-BLE, it needs to

TABLE I: Model error with different packet loss rate (‰).

Tx Role Pkt. size Ideal 10% 20% 30% 40%

Central 100B 1.697 0.201 0.201 0.202 0.193

1024B 1.043 0.172 0.180 0.176 0.172

Peripheral 100B 6.913 0.089 0.980 0.757 0.711

1024B 0.737 0.589 0.116 0.742 0.128

pre-measure the number of CEs to transmit a theoretically

longest packet in one CE. We set the length to 245 bytes since

in the worst-case, the native NimBLE only ensures 5ms for

each CE and each role can only transmit one L2CAP packet.

A. Latency Guarantee

We evaluate the latency guarantee of RT-BLE with two

different traffic rates. The first one has eight Peripherals

that transmitting 100B data every 500ms, and the latency

requirement is (95%, 200ms). The second one has up to four

Peripherals each transmitting 1KB data every 500ms, which

requires three virtual slots. The latency requirement for each

connection is (90%, 300ms).
Fig. 10 shows the end-to-end latency with different traffic

rates and packet loss rates. The RT-BLE can guarantee latency

requirements in all scenarios. The reason is two-fold. First,

we propose an accurate latency model in noisy RF environ-

ment and use it to allocate proper time resource for each

connection. Second, RT-BLE uses a collision tree to avoid the

connection collisions. To evaluate the accuracy of estimating

the worst-case transmission time. We manually inject nre

times packet losses to the last PDU and measure the data

transmission time, where the nre is calculate by Alg. 1. Tab. I

shows the error between the estimation and real transmission

time. The error of our model is less than 6.913‰. The BLEX

fails to provide reliable service. For small traffic rate, the

CE length is relatively short, and BLEX merges the time

resource that the time between two anchor points of different

connections can be less than 5ms, which are considered as

collisions. For the large traffic scenario, the packet loss will

cause significant fluctuations in CE length, which makes the

CE length prediction harder. Also, the BLEX will not adapt the

CI to different packet loss rates, leading to large retransmission

latency. The TL-BLE performs better than BLEX. However,

the CI of TL-BLE is shorter than RT-BLE because its model

does not consider the underlying BLE link-layer behavior.

For example, in the Fig. 10(d), the CI of TL-BLE is 32.5ms

and 40ms for RT-BLE. The reason why TL-BLE still has

higher latency is TL-BLE is built on native BLE link-layer,

the collision issue gets worse when the number of Peripherals

and packet length are increased.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

Packet loss

0 10 20 30 40 50 60 70 80 90
Time (s)

0
100
200
300
400
500
600

La
te

nc
y

(m
s)

RT-BLE
BLEX
Critical mode

Fig. 11: The worst-case latency during requirement changes.

20 40 80 160 320 640
(Equivalent) Connection interval (ms)

0

1

2

3

4

D
el

ay
 (s

)

RT-BLE moves 10ms
RT-BLE moves 15ms
BLEX moves 10ms

Fig. 12: The connection re-scheduling delay.

B. Online Adaptation

To show RT-BLE can quickly adapt to the requirement

changes, we connect the Central with eight Peripherals without

injecting any packet loss. In the first 30 seconds, all Peripherals

work in the normal mode that transmit 100B data every 1s

and the worst-case latency is 200ms. During the 30s and 60s,

the first Peripheral enters the critical mode to transmit a 1KB

packet every 1s, and the worst-case latency is 100ms. After

the 60s, the first Peripheral returns to the normal mode.

Fig. 11 shows the timeline of the worst-case latency during

90 seconds. RT-BLE can quickly adapt to the latency require-

ment changes. During normal mode, the transmission at 14s

suffers from interference from the real world, so the worst-case

latency exceeds the 200ms limitation. Except this one, all

the other transmissions satisfy the limitation and the average

latency is 166.72ms. During the critical mode, the worst-case

latency of the 30th transmission is high, since there are no

enough time resource has been allocated to this connection yet

and the Central has to transmit control PDUs for connection

re-scheduling. After that, RT-BLE is adapted to the traffic rate

and latency requirement changes. Also, RT-BLE can quickly

return to the normal mode after 60s. BLEX is failed in this

scenario. In normal mode, there are multiple transmissions

that violate the latency limitation because the CE length is

small and BLEX merges the connections too closely to avoid

collisions. While in the critical mode, BLEX seriously violates

the latency requirement. The reason is two-fold. First, once the

latency requirement is changed, the only thing BLEX can do

is extend the CE. However, it is not enough to achieve the

100ms latency. Second, the connection re-scheduling method

used by BLEX suffers from a long delay. What’s worse, before

extending the CE of the first Peripheral, BLEX should first

move the remaining seven connections to the right. In Fig. 12,

we compare the time to re-schedule one connection. To move

2 virtual slots (10ms), RT-BLE can reduce 85.74% to 86.25%

delay compared with the traditional method used in BLEX.

This because we utilize the connection subrating feature that

can update its parameters with minimal delay. If the length of

movement is three virtual slots (15ms), RT-BLE should first

use connection update to move the anchor point 5ms to the

1 2 3 4 5 6 7
Virtual-slot number

0

10

20

30

co

nn
ec

tio
ns

be
fo

re
 D

oS

26

6

12

3
6

2
4

1
4

1
4

1 1 1

RT-BLE
BLEX

Fig. 13: System capacity.

3 4 5 6 7 8 9
Collision-tree level

20

40

60

80

100

Ex
ec

ua
tio

n
tim

e
(

s) Average exec. time
Exec. time interval

Fig. 14: Execution time.

0 10 20 30 40
Packet loss rate (%)

5

10

15

20

25

30

En
er

gy
 c

on
su

m
pt

io
n

(
J)

RT-BLE
TL-BLE
BLEX

0 10 20 30 40
Packet loss rate (%)

0

50

100

150

200

250

En
er

gy
 c

on
su

m
pt

io
n

(
J)

RT-BLE
TL-BLE
BLEX

Fig. 15: Average energy consumption to transmit one packet.

right, so there is an extra delay of 65.11ms compared with

the one move 10ms. This extra delay is independent of the

equivalent CI, since RT-BLE will change the subrate factor to

1 before it starts the connection update procedure.

C. Capacity and System Overhead
To evaluate the capacity of RT-BLE, assume that there is no

packet loss and there is a connection that needs one virtual slot

and the worst-case latency is 50ms. Before the RT-BLE deny

to provide service to this connection, how many connections

which has 200ms worst-case latency requirement and different

numbers of virtual slots can be connected. Fig. 13 shows the

capacity of RT-BLE is up to 4.33× higher than BLEX. The

reason is RT-BLE utilizes a collision tree to optimally allocate

time resource but the BLEX uses a greedy policy.
Fig. 14 shows the time to search any node in different

level. The average searching time increased from 27.45us to

60.39us with the increase of tree level. The lower bound is

relatively fixed, it happens when searching the first node in

each level. The upper bound of execution time is 98.40us,

which is acceptable for BLE connection establishment. We

evaluate the average energy consumption for the Peripherals

to complete one data transmission, which is obtained by

multiplying the average power and the end-to-end latency. The

scenario is same as the Sec. VII-A. In Fig. 15, RT-BLE can

reduce 7.51% to 55.72% energy consumption for Peripheral

transmitting 100B data, and 4.89% to 61.64% for 1KB data.

VIII. CONCLUSION

This paper proposes RT-BLE. First, we introduce a time-

liness model which precisely formulate the retransmission

mechanism of BLE. RT-BLE uses it to calculate how much

time resource is needed for each connection. Then, we pro-

pose a collision tree based time resource manage technology

to optimally manage time resource. Finally, we propose a

subrating-based fast connection re-scheduling method without

violating the Bluetooth specification. Our experiment result

show RT-BLE can provide reliable service even with heavy

packet loss. The error of our model is less than 0.69%. The

re-scheduling delay is reduced by up to 86.25% and the

capacity is up to 4.33× higher than existing work.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Research, “Bluetooth Low Energy Market Set to
Triple by 2023, Reaching 1.6 Billion Device Shipments,”
https://www.abiresearch.com/market-research/product/
1032422-wireless-connectivity-technology-segmentat/, 2019.

[2] C. Lazaroiu and M. Roscia, “BLE To Improve IoT Connection in the
Smart Home,” in Proc. of IEEE ICRERA, 2021, pp. 282–287.

[3] H.-K. Wu, “Development of A Low Power Temperature Sensing Device
Based on BLE Technology,” in Proc. of IEEE ICKII, 2021, pp. 58–59.

[4] J. Razavi and N. Brennan, “A novel application of Bluetooth technology
for detection of forest fires,” in Proc. of IEEE ICWiSE, 2016, pp. 66–70.

[5] H. Karvonen, K. Mikhaylov, M. Hämäläinen, J. Iinatti, and
C. Pomalaza-Ráez, “Interference of wireless technologies on BLE based
WBANs in hospital scenarios,” in Proc. of IEEE PIMRC, 2017, pp. 1–6.

[6] G. Alfian, M. Syafrudin, M. F. Ijaz, M. A. Syaekhoni, N. L. Fitriyani,
and J. Rhee, “A personalized healthcare monitoring system for diabetic
patients by utilizing BLE-based sensors and real-time data processing,”
Sensors, vol. 18, no. 7, p. 2183, 2018.

[7] P. Paul, N. Dutta, B. A. Biswas, M. Das, S. Biswas, Z. Khalid, and H. N.
Saha, “An internet of things (IoT) based system to analyze real-time
collapsing probability of structures,” in Proc. of IEEE IEMCON, 2018,
pp. 1070–1075.

[8] M. Bartholmai, S. Johann, and C. Strangfeld, “Embedded wireless
sensor systems for long-term SHM and corrosion detection in concrete
components,” in Proc. of International Conference on Structural Health
Monitoring of Intelligent Infrastructure-Proceedings, 2017, pp. 1–7.

[9] R. Rondón, M. Gidlund, and K. Landernäs, “Evaluating Bluetooth
Low Energy suitability for time-critical industrial IOT applications,”
International Journal of Wireless Information Networks, vol. 24, no. 3,
pp. 278–290, 2017.

[10] E. Park, H.-S. Kim, and S. Bahk, “BLEX: Flexible Multi-Connection
Scheduling for Bluetooth Low Energy,” in Proc. of ACM IPSN, 2021,
pp. 268–282.

[11] M. Spörk, C. A. Boano, and K. Römer, “Improving the Timeliness of
Bluetooth Low Energy in Noisy RF Environments.” in Proc. of EWSN,
2019, pp. 23–34.

[12] Spörk, Michael and Boano, Carlo Alberto and Römer, Kay, “Improving
the timeliness of Bluetooth Low Energy in dynamic RF environments,”
ACM Transactions on Internet of Things, vol. 1, no. 2, pp. 1–32, 2020.

[13] M. Spörk, M. Schuß, C. A. Boano, and K. Römer, “Ensuring End-to-End
Dependability Requirements in Cloud-based Bluetooth Low Energy
Applications.” in Proc. of EWSN, 2021, pp. 55–66.

[14] “nRF52840 Objective Product Specification v0.5,” https://infocenter.
nordicsemi.com/pdf/nRF52840 OPS v0.5.pdf, 2016.

[15] “Apache NimBLE,” https://github.com/apache/mynewt-nimble, 2022.

[16] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “ptunes:
Runtime parameter adaptation for low-power mac protocols,” in Proc.
of ACM IPSN, 2012, pp. 173–184.

[17] W. Gao, Z. Zhao, and G. Min, “AdapLoRa: Resource adaptation for
maximizing network lifetime in LoRa networks,” in Proc. of IEEE ICNP,
2020, pp. 1–11.

[18] S. Kim, H.-S. Kim, and C. Kim, “ALICE: Autonomous link-based cell
scheduling for TSCH,” in Proc. of ACM IPSN, 2019, pp. 121–132.

[19] S. Kim, H.-S. Kim, and C.-k. Kim, “A3: Adaptive autonomous allocation
of TSCH slots,” in Proc. of ACM IPSN, 2021, pp. 299–314.

[20] O. Tavallaie, J. Taheri, and A. Y. Zomaya, “Throughput maximization
in low-power iot networks via tuning the size of the tsch slotframe,” in
Proc. of ACM SenSys, 2021, pp. 401–402.

[21] S. Duquennoy, B. Al Nahas, O. Landsiedel, and T. Watteyne, “Orchestra:
Robust mesh networks through autonomously scheduled tsch,” in Proc.
of ACM SenSys, 2015, pp. 337–350.

[22] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-demand TSCH
scheduling with traffic-awareness,” in Proc. of IEEE INFOCOM, 2020,
pp. 69–78.

[23] W. Park, D. Ryoo, C. Joo, and S. Bahk, “BLESS: BLE-aided Swift Wi-Fi
Scanning in Multi-protocol IoT Networks,” in Proc. of IEEE INFOCOM,
2021, pp. 1–10.

[24] C. Julien, C. Liu, A. L. Murphy, and G. P. Picco, “Blend: practical
continuous neighbor discovery for Bluetooth Low Energy,” in Proc. of
ACM IPSN, 2017, pp. 105–116.

[25] H.-W. Cho and K. G. Shin, “BlueFi: Bluetooth over WiFi,” in Proc. of
ACM SIGCOMM, 2021, pp. 475–487.

[26] R. Ayyalasomayajula, D. Vasisht, and D. Bharadia, “BLoc: CSI-based
accurate localization for BLE tags,” in Proc. of ACM CoNEXT, 2018,
pp. 126–138.

[27] R. Liu, Z. Yin, W. Jiang, and T. He, “WiBeacon: Expanding BLE
location-based services via WiFi,” in Proc. of ACM MobiCom, 2021,
pp. 83–96.

[28] M. Spörk, C. A. Boano, M. Zimmerling, and K. Römer, “Bleach:
Exploiting the full potential of ipv6 over ble in constrained embedded
iot devices,” in Proc. of ACM SenSys, 2017, pp. 1–14.

[29] H. Petersen, T. C. Schmidt, and M. Wählisch, “Mind the Gap: Multi-hop
IPv6 over BLE in the IoT,” in Proc. of ACM CoNEXT, 2021, pp.
382–396.

[30] P. Kindt, D. Yunge, M. Gopp, and S. Chakraborty, “Adaptive online
power-management for Bluetooth Low Energy,” in Proc. of IEEE
INFOCOM, 2015, pp. 2695–2703.

[31] T. Lee, J. Han, M.-S. Lee, H.-S. Kim, and S. Bahk, “CABLE: Connec-
tion interval adaptation for BLE in dynamic wireless environments,” in
Proc. of IEEE SECON, 2017, pp. 1–9.

[32] J.-H. Chen, Y.-S. Chen, and Y.-L. Jiang, “Energy-efficient scheduling for
multiple latency-sensitive Bluetooth Low Energy nodes,” IEEE Sensors
Journal, vol. 18, no. 2, pp. 849–859, 2017.

[33] F. J. Dian and R. Vahidnia, “Formulation of BLE throughput based
on node and link parameters,” Canadian Journal of Electrical and
Computer Engineering, vol. 43, no. 4, pp. 261–272, 2020.

[34] “RIOT OS: The friendly Operating System for the Internet of Things,”
https://www.riot-os.org/, 2022.

Authorized licensed use limited to: Zhejiang University. Downloaded on November 01,2023 at 13:33:58 UTC from IEEE Xplore. Restrictions apply.

