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Abstract—IoT application development usually involves sep-
arate programming at the device side and server side. While
separate programming style is sufficient for many simple appli-
cations, it is not suitable for many complex applications that
involve complex interactions and intensive data processing.

We propose EdgeProg, an edge-centric programming approach
to simplify IoT application programming, motivated by the
increasing popularity of edge computing. With EdgeProg, users
could write application logic in a centralized manner with an
augmented If-This-Then-That (IFTTT) syntax and virtual sensor
mechanism. The program can be processed at the edge server,
which can automatically generate the actual application code and
intelligently partition the code into device code and server code,
for achieving the optimal latency. EdgeProg employs dynamic
linking and loading to deploy the device code on a variety of IoT
devices, which do not run any application-specific codes at the
start. Results show that EdgeProg achieves an average reduction
of 20.96% and 79.41% in terms of execution latency and lines
of code, compared with state-of-the-art approaches.

Index Terms—IoT, IFTTT, Integer Linear Programming

I. INTRODUCTION

IoT application development usually involves separate pro-
gramming at the device side and server side. For example,
consider a smart plant application. Users can program an IoT
node like Arduino to sense the soil humidity of a plant. The
sensing data can then be transmitted to the back-end server
for further analysis.

This separate programming style is sufficient for many
simple applications. However, it is not suitable for many
complex applications that involve complex interactions and
intensive data processing.

Complex interactions. Consider the following application:
a user wants to turn on an LED when a sensor attached to a
door detects an open event. With the traditional programming
style, the application logic would be scattered among different
sensor nodes, resulting in increased system complexity and
reduced manageability.

Intensive data processing. Consider a speech recognition
application. A simple way of designing such a system would
deliver all the sensor data to the server running the sophis-
ticated recognition algorithm. This approach may consume
excessive energy due to a large number of transmissions.
A different approach is to run the recognition algorithm on
the IoT device. This approach, however, may cause excessive
delays due to insufficient computation power of the device.
Separate programming requires the programmer to make
proper decisions, which is quite difficult.

We advocate here a different programming approach, mo-
tivated by the increasing popularity of edge computing. In
the edge computing paradigm, a number of IoT nodes can
perform sensing and actuation. These nodes are connected
to a local edge that can perform sophisticated computation.
Moreover, edge servers usually have power supplies and are
less constrained by energy. Edge computing can offer low
processing delay and better privacy.

Taking advantage of the edges, we have developed
EdgeProg—a new programming style and software architec-
ture to greatly simplify IoT application programming, resulting
in a generic IoT system that can be reprogrammed for a variety
of applications without significant loss of overall system
efficiency.

To use EdgeProg, developers write a program in a high-
level language integrating the whole application logic of an
IoT application. This program can further be processed at
the edge server, which can automatically generate the actual
application code and intelligently partition the code into device
code and server code. We call this approach edge-centric
since developers can regard the program as if it runs on the
edge. More importantly, ordinary IoT nodes do not run any
application-specific codes at the start. When the program is
first executed, the device code will be automatically loaded
onto the memory of IoT nodes. Nevertheless, this edge-centric
programming process raises some challenges:

• How to design an edge-centric language that could sup-
port multi-device interaction and data-intensive computa-
tion?

• How to partition the user-perceived program to achieve
the best delay performance?

• How to design a mechanism so that heterogeneous sensor
nodes can dynamically load the device-side code and
execute it in an efficient manner?

In order to support edge-centric programming and speed-up
the application development process, we design a coherent lan-
guage for specifying the multi-device interaction based on the
widely-adopted programming model, IFTTT (IF-This-Then-
That) [1]. To further enhance the expressiveness and adopt the
data-intensive computation, we extend the traditional IFTTT
syntax with the virtual sensor, which accelerates developers to
design their own data processing logic with machine learning
techniques.

EdgeProg conducts automatic code partitioning which fully
leverages the computation ability of each device and achieves



optimal end-to-end latency. We abstract the user-written pro-
gram as a data flow graph, formulate the partitioning problem
as an integer programming (ILP) problem and leverage the
efficient solver lp_solve to obtain the optimal partition.

We implement EdgeProg with Contiki OS for its cross-
platform support and the ability to load the optimized exe-
cutable at runtime with dynamic linking and loading tech-
nique. An alternative approach to change the application logic
during its execution is exploiting virtual machines (VMs) or
using a scripting language. Nevertheless, we do not adopt the
alternatives due to they introduce considerable overhead than
dynamic linking and loading.

We implement EdgeProg and evaluate its performance
extensively. Results show that: (1) EdgeProg programming
language can express diverse IoT application logic and reduces
the lines of code needed by 79.41% on average. (2) EdgeProg
achieves a 20.96% reduction on average, and up to 99.05%
reduction across the five real-world applications under all set-
tings compared with state-of-the-art partitioning systems such
as Wishbone [2] and RT-IFTTT [3]. (3) For application run-
time, the dynamic linking and loading technique outperforms
than design alternatives such as virtual machine (by 9.98X)
and scripting languages (by 6.37X). (4) The profiling methods
adopted by EdgeProg achieves 90%+ and 85%+ accuracy
for over 98% test cases. The contributions of this work are
summarized as below:

• We present EdgeProg, an edge-centric programming sys-
tem for IoT applications. The EdgeProg language relieves
developers from scattered application logic and enables
them to express their logic in an easy-to-use way.

• We formulate the code partitioning problem to minimize
the makespan of the task. The partitioning algorithm opti-
mizes the placement of each stage in an application with
consideration of both processing and network latency.

• We implement EdgeProg and evaluate EdgeProg mas-
sively with real-world applications and benchmarks. Re-
sults show that EdgeProg achieves better latency reduc-
tion compared with state-of-the-art approaches and fewer
lines of code.

II. BACKGROUND AND EDGEPROG USAGE

In this section, we briefly introduce the techniques used in
EdgeProg, including the dynamic linking and loading of IoT
devices as well as the virtual sensor. Then we present the usage
of EdgeProg with a simple smart home application.

A. Background
Dynamic linking and loading of IoT devices. Dynamic

linking and loading is one of the over-the-air reprogramming
techniques for IoT devices. As its name suggests, reprogram-
ming with dynamic linking and loading technique owns a
linking phase and a loading phase. In the linking phase, the on-
device reprogrammer first parses the structured information of
a file in standard executable and linkable format (ELF) or its
variants (e.g., CELF [4] and SELF [5]). Then the reprogram-
mer allocates ROM and RAM for the data and text segment in

the ELF file and performs relocation. The relocation is to patch
the data and text segment with real in-memory addresses of
the symbols, which are found in the symbol table or calculated
using the relocation information in the ELF. Once the linking
phase is complete, the reprogrammer writes text segments to
the allocated ROM and copies data segments to the RAM,
which is called the loading phase. So far, the binary is loaded
and ready to be executed.

Compared with the alternatives such as virtual machine [6],
[4], [7] and bootloader [8], dynamic linking and loading
obtains several inherent merits. (1) High long-term efficiency
because it runs native code rather than virtual machine code.
(2) Reboot-less update, which is also energy-saving.

Virtual sensor. Opposite to the physical or hardware sensor,
a virtual sensor is a logical entity that abstracts the data
sensed by real sensors which could be located at different
places. Traditional hardware sensors generally produce raw
measurements of physical properties such as the moisture
value or light intensity, which are unprofitable unless being
transformed into the high-level domain-dependent informa-
tion. Furthermore, capturing the valuable information usually
requires coordination of multiple hardware sensors, e.g., de-
tecting fire hazards with both temperature and smoke sensor.
In order to tackle the limitations above and make sensor data
processing more flexible, virtual sensors have been proposed.
For example, SenseHAR [9] advocates a virtual activity sensor
that abstracts the data of several inertial sensors from different
devices using a sensor fusion network. Similarly, LiKamWa et
al. propose a virtual mood sensor named Moodscope [10] to
measure the user’s mental state based on the interactions with
the smartphone. Virtual sensors act as a black-box providing
the indirect measurements or events, which are typically phys-
ically immeasurable, by combining sensed data from several
hardware sensors with data processing algorithms. EdgeProg
embraces this technique as one of the extensions to standard
IFTTT syntax to provide easy-to-use yet expressive handling
for intensive data processing.

B. EdgeProg Usage
We excerpt a simple smart home project named

SmartHomeEnv from smarthome.com to illustrate how
EdgeProg can be used. As shown in Figure 1(a),
SmartHomeEnv takes the temperature and humidity data
from two IoT nodes as input, turns on the air conditioner and
dryer if the two readings exceed fixed thresholds. The two
nodes are wirelessly connected to an edge server, which could
be a Raspberry Pi.

In the traditional approach, two sensors are pre-installed
with an application-specific code with functions like periodi-
cally transmitting sensor values to the edge server. The edge
server further processes these readings and interacts with the
sensors with pre-defined interfaces.

With EdgeProg, in contrast, the two sensors are pre-installed
with an “idle” program without any application-specific logic.
The whole application logic is expressed in an enhanced
IFTTT-like language, which is interpreted and processed at
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Fig. 1. Illustration of execution stages of the two examples. Each block
represents one stage, and stage processing time on the device (and on the
edge node, if necessary) is annotated inside the block.

1 Application SmartHomeEnv{
2 Configuration{TelosB A(TEMPERATURE);
3 TelosB B(HUMIDITY);
4 Edge E(turnOnAC, turnOnDryer);}
5 Rule{IF (A.TEMPERATURE > 30 && B.HUMIDITY > 70)
6 THEN (E.turnOnAC && E.turnOnDryer)}
7 }

Fig. 2. Code snippets of SmartHomeEnv.

the edge server. Figure 2 shows an EdgeProg application of
SmartHomeEnv. Lines 2-4 describe the devices (A, B, E) and
their interfaces (e.g., the HUMIDITY of device B) used in this
application with keyword Configuration. With the infor-
mation above, lines 5-6 specify the application logic following
the IFTTT manner. The edge server automatically partitions
the codes into two components, i.e., device-side components
and edge-side components. The former are compiled to a
loadable module and dispatched to the sensor nodes. Once
notified, the “idle” program in the IoT node can dynamically
load application-specific module for execution.

A key feature of EdgeProg is that it can automatically
partition the whole application codes to optimize the execution
performance, which is increasingly essential for computation-
intensive IoT tasks such as speech recognition and video
surveillance. Figure 1(b) shows such an example in which
the VoiceRecog task may be too heavyweight for resource-
constrained devices such as TelosB or Arduino. EdgeProg will
automatically partition this task to the edge-side if it yields a
better performance than placing it on the device.

III. EDGEPROG OVERVIEW

In this section, we first discuss the design goals of Edge-
Prog, overview our system design, and introduce some essen-
tial components.

A. Design Goals

• Edge-centric. Compared to the traditional scattered pro-
gramming manner, EdgeProg should provide users with
an edge-centric approach to create the application, which
indicates that users need not to break down the application
logic into pieces during development.

• Latency-aware. The timeliness is recognized as a critical
performance metric of an edge-device coordinated appli-
cation. The ability to deliver a time-optimal solution of

a given input is one of the requirements in EdgeProg’s
design.

• Automatic. By automatic, we mean that EdgeProg should
conceive details which have no benefit for users to express
their ideas and removes human from the loop to simplify
and accelerate the application development.

B. EdgeProg Architecture
In Figure 3, we show a birds-eye view of EdgeProg’s system

architecture and functional workflow. Users can directly write
the application code in an edge-centric manner, i.e., without
following the distributed programming style or considering
the physical placement of each stage (see §IV-A for details).
The system takes the user code as input, preprocesses and
feeds it into the code partitioner. With the help of the time
profile of each device and our partitioning algorithm, the code
partitioner finds the optimal partition and placement of each
stage. Processed by the code generator, the user-written code
is then transformed into the compilable code and compiled to
executable or loadable binary by the code compiler. Finally,
the executables are disseminated to the devices over the air or
deployed on the edge device if necessary.

User Input. The user input is written in EdgeProg program-
ming model, which centers around the notion of Rules that
specifies the application logic with sensor data, actuator pre-
sented by the devices, specified by Interfaces, or virtual
sensors’ output, specified by Implementation. Detailed
features of the EdgeProg programming language are specified
in §IV-A.

Code Partitioner. The code partitioner is responsible for
generating the optimal partition of the user-input applications.
We will further give a detailed description in §IV-B.

Time Profiler. The timing information of each stage is one
of the critical inputs to the code partitioner. Similar to [2],
[11], EdgeProg leverages a profiling phase to obtain the execu-
tion time on different platforms. For the low-end sensor nodes,
we exploit the cycle-accurate simulators such as MSPsim for
MSP430-based nodes (e.g., TelosB) and Avrora for AVR-
based nodes (e.g., MicaZ) to get the timing information. For
the high-end devices such as Raspberry Pi, profiling it with
simulators will be less accurate than the low-end ones mainly
due to these powerful devices employ automatic frequency
scaling strategy, which reduces the accuracy of a simulator.
However, executing on the real device and collect raw timing
data is painful and sometimes infeasible due to the hardware
interface limit of edge servers. Hence, we choose a near cycle-
accurate simulator named gem5 for profiling high-end devices.
We will evaluate the profiling accuracy in §V-E.

Network Profiler. Network condition (e.g., bandwidth)
is also a critical metric being fed into the partitioner. In
order to predict the network condition when the application
is deployed, we leverage the multiple-output support vector
regression (M-SVR) algorithm [12] since it generates a series
of prediction results representing the future network condition
in a sequence of intervals. In our temporary implementation,
the network profiler contains the prediction of the WiFi and
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Fig. 3. System Overview of EdgeProg.

Zigbee network. Raw observations such as the bandwidth and
received signal strength indicator (RSSI), which is sampled by
the loading agent at 0.1Hz in order not to influence the regular
network transmission, are fed into the M-SVR. The predictor
outputs the future throughput estimation and per-packet trans-
mission time for further fine-grained time calculation in §IV-B.
Here, since the predicting algorithm acts as a black-box in our
system, EdgeProg can use other prediction models instead of
the M-SVR model.

Code Generator. The generated optimal partition is pro-
cessed by the code generator to translate the high-level Edge-
Prog code into the compilable C code, detailed in §IV-C.

Code Compiler. Fed by the compilable code, the code
compiler generates the executables for the target platform and
starts dissemination. In our current implementation, EdgeProg
supports four MCU architectures (ATmega, MSP, ARM and
x86) with four platforms.

Loading Agent. At the very beginning of our system, there
is no application-specific logic running on the node except a
loading agent. The loading agent periodically communicates
with the edge server for new loadable applications. Once the
application is compiled by the compiler and starts dissemina-
tion, the loading agent on the deployment destination detects,
verifies and receives the executable and dynamically runs it.

IV. SYSTEM DESIGN

In this section, we will first present the design of EdgeProg
programming language and highlight the features which enable
integrated development. Then we will describe how EdgeProg
obtains the optimal partition of the input IoT application with
fully aware of the user-perceived event handling latency, in-
cluding details about the problem formulation and its solution
algorithm. Finally, we demonstrate how EdgeProg generates
the application code to be disseminated to both devices and
edge servers.

A. EdgeProg Programming Language
In order to tackle the problem of existing scattered program-

ming style and accelerate the application development process,
EdgeProg adopts a rule-based domain-specific language (DSL)
for developers to build their applications. An EdgeProg ap-
plication is typically organized as three parts: configuration,
implementation and rule. As shown in Figure 4, we use the
SmartDoor application described in §II-B as an example to
illustrate three critical features in the following.

1 Application SmartDoor{
2 Configuration{
3 RPI A(MIC, DOOR_UNLOCK, OPEN_DOOR);
4 TelosB B(LIGHT_SOLAR);
5 }
6 Implementation{
7 VSensor VoiceRecog("FE, ID"){
8 VoiceRecog.setInput(A.MIC);
9 FE.setModel("MFCC")

10 ID.setModel("GMM", "open.gmm");
11 VoiceRecog.setOutput(<string_t>,"open");
12 }
13 }
14 Rule{
15 IF(VoiceRecog=="open" && B.LIGHT_SOLAR<100)
16 THEN(A.DOOR_UNLOCK && A.OPEN_DOOR)
17 }
18 }

Fig. 4. Code snippets of the SmartDoor application.

Edge-centric programming model. In order to achieve
the edge-centric design goals of EdgeProg, our programming
model should focus users more upon the global behavior other
than implementation details. Hence, EdgeProg enables devel-
opers to organize their application centered with the overall
application logic using keyword Rule. There exist several
DSLs enabling developers to focus on upper logic, as known
as the macro-programming model, in sensornet researches
such as Kairos [13] and Regiment [14]. Nevertheless, existing
works fall flat nowadays due to the constraint on application
portability or lack of actuation. IFTTT programming shows
its simpleness and effectiveness in existing researches [15],
[3], [16] when expressing the high-level application logic,
and this programming approach is widely adopted in state-
of-the-art industrial solutions such as Samsung SmartThings
and Microsoft Flow. By early 2017, the website ifttt.com had
gathered over 320,000 IFTTT programs [1] and the numbers
are still increasing dramatically. Therefore, we leverage an
IFTTT-like grammar for enabling users to express their idea in
a unified and explicit manner, as illustrated in lines 14-17 of
Figure 4. Moreover, we augment the IFTTT grammar with
Configuration and Implementation to make users
express the detailed definition and specification of necessary
components used in the Rule part.

Full support of virtual sensor. In order to accommodate
the intensive data processing in nowaday IoT scenario, we
enhance our DSL with the virtual sensor. As we described in
§II-A, the virtual sensor is an efficient approach for developers
to describe complicated data processing algorithms, which
are generally organized in two stages: feature extraction and



1 VSensor VoiceRecog(AUTO){
2 VoiceRecog.setInput(A.MIC, A.Accel_x, A.Accel_y

, A.Accel_z, B.Light, B.PIR);
3 VoiceRecog.setOutput(<string_t>,"open", "close"

);}

Fig. 5. An example implementation code snippet of an algorithm-agnostic
virtual sensor.

classification. As shown in Figure 4, lines 4-12 list the configu-
ration of a virtual sensor, VoiceRecog, to recognize whether
the input voice fragment produced by interface A.MIC stands
for "open" or not. This virtual sensor is a pipeline of two
stages: FE and ID. The algorithms employed by each stage,
specified by the keyword setModel(), are MFCC (Mel
Frequency Cepstral Coefficient) and GMM (Gaussian Mixture
Model), which are commonly used by voice recognition sys-
tems [17], [18]. Currently, we implement 17 data processing
algorithms, including 12 for feature extraction and 5 for
classification. Although FE and ID are the compositions of
the typical pipeline, applications with more stages and parallel
stages are also supported in our system, such as the EEG
seizure onset detection application described in [2].

Furthermore, there still a lot of complexity for green-handed
developers due to they may have no idea of which sensors are
strongly-related to the expected output and how they related.
To relieve this, we propose the inference-agnostic virtual
sensor. To construct it, developers could merely provide the
set of possibly related sensors and the expected output of the
virtual sensor, as Figure 5 shows. EdgeProg will first generate
a simple sampling application, and developers should record
the events they desired with it to obtain enough training data.
Then EdgeProg will train an inference model which reflects the
relationship between the input sensors and the recorded events.
Finally, the trained model is partitioned and disseminated,
similar to the other virtual sensors.

Explicit data flow. According to our analysis on 101
commonly-used IoT applications from several popular devel-
opment websites such as DFRobot and Hackster.io, we find
that about 45% lines of code in these projects are written for
data flow construction and interaction, which is a considerable
proportion and increases the project complexity. Furthermore,
multi-device interaction makes the data flow more complicated
due to the it is conceived in the network packet construction.

In a typical IoT application, data flow starts from the pro-
duction of sensor data, processed by several algorithms, then
finally saved in the database or turned into a command back to
the actuator IoT node. Hence, we make the data flow explicit
in these three steps. For data production and final actuation,
as illustrated in lines 2-4 of Figure 4, developers specify the
data and available actions as interfaces. For example, line 3
illustrates that three interfaces (microphone sampling, door
unlocking and door opening) of a Raspberry Pi named A are
used in this application. The available interfaces of specific
hardware are determined by its vendor or prototype developer.
For data processing, virtual sensors and rules directly use or
call the interfaces, which results in a unified and explicit data
flow.

B. Code Partitioning

The goal of EdgeProg’s code partitioning sub-system is to
divide the user input into appropriate stages and to obtain the
optimal placement of each stage. To accomplish them, we first
preprocess the user input application into logic blocks, which
represent the computation stages, and generate a data flow
graph of the rules to obtain a full view of the user logic as
well as the stage dependency. Thus, as latency-ware is one
of the design goals of EdgeProg, we formulate the latency
minimizing problem and employ an efficient solver to obtain
the optimal placement of each stage.

The key insight of our partitioning algorithm is that we push
the computation close to the data source as much as possible
and make the best use of the computation ability of each
device to achieve latency reduction. Moreover, the optimal
placement that exhibits favorable computation-transmission
tradeoff could be obtained by EdgeProg benefited from the
intrinsic global view of our programming language.

Logic blocks and data flow graph construction. Due to
the compact nature of our programming language, there are
mainly two gaps that prohibit us from further implementation
and optimization. (1) Some stages may be implicitly defined
and used in the application. For example, in Figure 4, the
interface LIGHT_SOLAR of device B is referenced in the rule.
Thus the stage of sensing it is necessary but being conceived
from the application. (2) The topological information is neces-
sary for optimization, which is also implied in the application.

To fill up the gaps, we construct a data flow graph of an
application whose nodes are represented with logic blocks.
A logic block is supposed to be expressive enough as an
independent building block of the application, i.e., it should
contain adequate information such as placement, algorithm and
necessary parameters for time profiling as well as its input
source for code generation. Hence, the logic block is defined
as a tuple <functionality, placement>, as shown in Figure 6.

• Functionality. To express the functionality, we borrow
the idea of tasklet primitives from Tenet [19] such as
SAMPLE, ACTUATE and CONJ, which provides building
blocks for a wide range of data acquisition and processing
tasks. Nevertheless, we further add the algorithms as
primitives (e.g., GMM) to accommodate the virtual sensor
deployment. The data source of a logic block is declared
as the first argument of the primitive.

• Placement. There are two kinds of code blocks in Edge-
Prog: pinned and movable. The pinned blocks are gen-
erally physical-constrained functionalities. For example,
SAMPLE must be placed on the device. Hence, the
placement is fixed for a pinned block, and we use its
corresponding device alias in the logic block. The place-
ment of a movable block, which is potentially deployed
on the device or edge server, is denoted with the question
mark to express the uncertainty.

Except for the explicitly declared logic blocks, some blocks
are also necessary for a complete graph but implicitly con-
ceived in the user application. In order to complete the data
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application.
flow graph with the intrinsic blocks, we analyze all the rules
defined in the Rule part with the following strategies:

• For conditions exploiting virtual sensors in the IF state-
ment, we refer to the Implementation part to obtain
the stage pipeline and insert SAMPLE blocks for the input.

• For conditions that only compare sensor values, we
convert it into two stages: SAMPLE and CMP.

• We use a CONJ block representing the conjunction of all
the conditions in the IF statement.

• For each action in the THEN statement, we use two
blocks: an auxiliary movable block AUX representing it
is edge-triggered or local-triggered and a pinned block
ACTUATE representing the action.

Then the data flow graph could be constructed as a directed
acyclic graph (DAG) G(V,E) whose vertices represent the
logic blocks and edges represent there exist a data flow, as
Figure 6 illustrates.

The ILP problem for optimal partitioning. With the help
of the data flow graph G(V,E), we formulate the optimal
partitioning problem as a numerical optimization problem. The
resulting optimal partition could be viewed as assigning each
logic block to its most preferable computational device. We
use a binary indicator Xbisi to demonstrate the partition result
as:

Xbisi =

(
1 logic block bi is assigned to device si

0 logic block bi is not assigned to device si
, (1)

where si represents the possible placement device of block bi.
We would like to borrow the existing code partitioning

algorithm proposed in Wishbone [2] to solve our problem.
Unfortunately, Wishbone algorithms are not feasible in our
problem mainly due to the following two differences:

• Node weights. Consider assigning weights to vertices in
the graph which represents the processing time of the
corresponding logic block. The weight of movable blocks
in our data flow graph is two-fold, indicating the local
and edge-server processing time, while each vertex in the
Wishbone graph only has one weight.

• Optimization goal. The optimization goal of Wishbone
is minimizing the sum of computational budgets and

network bandwidth. Nevertheless, EdgeProg focuses on
latency, which makes the Wishbone formulation no longer
suitable for our problem.

Different from Wishbone, our objective is to minimize the
task execution latency, which leads to minimizing the length
of the longest path in the data flow graph. We define the
full path as the path from a source vertex to a sink vertex,
denoted as p. We use len(p), d (p) and P(G) to indicate the
length of path p, the number of vertices in path p, and the
set of all full paths in graph G. Our optimization goal is thus
denoted as minmaxp2P(G) len(p). Moreover, due to the len(p)
is the sum of data processing and transmitting latency across
all possible placements, our objective is formulated with the
binary placement indicator Xbisi 2 {0,1} as:

argmin
X

max
p2P(G)

d (p)

Â
i=1

Â
si2Si

XbisiT
C
bisi

+
d (p)�1

Â
i=1

Â
si 2Si

si0 2Si0

XbisiXbi0 si0 T
N

bisisi0

(2)
where i, i0 are the adjacent vertices in path p (i.e., i0=i+1).
Si denotes the set of all possible placements of the i-th logic
block. TC

bisi
denotes the data processing time of the i-th block

on placement si, and T N
bisisi0

represents data transmitting time
between block bi of placement si and block bi0 of placement
si0 . We assume that the data transmission time is negligible
if the two consecutive logic blocks are placed on the same
device. Thus we have:

T N
bisisi0

=

(l
qii0
rii0k

m
tii0k si 6= si0

0 si = si0
, (3)

where qii0 denotes the data size being transmitted on edge (i,
i0). rii0k is a protocol-specific metric representing the maximum
packet payload of protocol k, e.g., the rii0k of 6LowPAN
network could be 122 bytes. Furthermore, the per-packet
transmission time is given by tii0k, which is profiled and
predicted by our network profiler detailed in §III-B.

Nevertheless, the objective formulation as Equation (2)
is a quadratic minimax problem, which is shown to be an
NP-hard problem [20]. The state-of-the-arts employ heuristic
algorithms to solve it efficiently. For example, the most recent
work [21] utilizes a breadth-first greedy search algorithm to
solve it. While we prefer to employ a solver that is less prone
to local optima. Inspired by McCormick relaxation [22], we
re-formulate Equation (2) as an integer programming problem
(ILP), which could be efficiently solved by the standard solver,
e.g., lp_solve. Towards this goal, we first convert the
quadratic objective function to a linear one by introducing an
auxiliary variable eisisi0 =Xbisi · Xbi0 si0 to replace the quadratic
term Xbisi ·Xbi0 si0 in Equation (2). Moreover, the presence of
eisisi0 causes the introduction of these constraints:

(8i2 d (p)�1,si2 Si,si0 2Si0) eisisi0 � 0 (4)
(8i2 d (p)�1,si2 Si,si0 2Si0) eisisi0  Xbisi (5)
(8i2 d (p)�1,si2 Si,si0 2Si0) eisisi0  Xbi0 si0 (6)
(8i2 d (p)�1,si2 Si,si0 2Si0) eisisi0+1�Xbisi+Xbi0 si0 . (7)



It can be observed that all the above four constraints are linear.
Whereas our objective function is still in a minimax shape,
which needs further transformation. We thus introduce another
auxiliary variable z and convert the inner max function to a
set of constraints to make it follow standard ILP formulation.
The rewritten ILP objective function is illustrated as:

Objective: argmin
X

z (8)

Subject to:

z �
d (p)

Â
i=1

Â
si2Si

XbisiT
C
bisi

+
d (p)�1

Â
i=1

Â
si 2Si

si0 2Si0

eisisi0 T
N

bisisi0
,8p 2 G. (9)

Furthermore, we add constraints for placement indicator
Xbisi to ensure all the logic blocks are appointed to a specific
device.

Â
si2Si

Xbisi = 1,8i 2 p 2 G (10)

Thus, any optimal solution of Equation (8) subject to (4)-
(7), (9) and (10) will be the optimal partition of the input
application.

C. Executable Generator

The executable generator in EdgeProg contains two steps:
(1) constructing pieces of compilable code from the optimal
partition and the logic blocks, and (2) compiling the code to
platform-specific executables.

Benefited by the cross-platform nature of Contiki OS,
we could generate the code for edge server (mostly Linux-
compatible hardware) as well as sensing devices in a sim-
ilar manner. Then compile them using the platform-specific
toolchains provided by Contiki based on msp430-gcc for
TelosB and gcc-linaro-arm for Raspberry Pi. The only
difference our generator should take care of is the different
libraries included and sampling APIs used for distinct plat-
forms. Hence, we focus on how to generate compilable code
that runs efficiently.

As we mentioned in the last section, the logic blocks are
designed to be expressive enough to act as a building block of
an application, and hence they are transformed to a function
into the final compilable code. The most difficult issue is
how to organize the function calls in the generated code. The
intuitive approach to accommodate the event-driven kernel and
the protothread technique of Contiki OS is to arrange all the
logic blocks assigned to the same placement in a protothread
and send/receive data if the next block is assigned to another
device. This simple design raises performance drawbacks. The
generated protothread could be too long with this design,
which degrades the system performance due to the non-
preemptive scheduling of Contiki1. Generating one protothread
of one block is also not efficient due to the short protothread

1Contiki supports preemptive multi-threading as a optional library, while
it requires additional multiple stack allocation which is stressful for low-end
devices such as TelosB. Hence we do not adopt this scheme.

incurs much process switching overhead, which will also harm
the overall makespan.

Our approach is based on a code template of Contiki
necessaries and a send thread with receive callback. The
functioning protothreads are generated from graph fragments
of the optimized DAG. The fragments of each device are
obtained by leveraging a depth-first traverse of the graph which
ends at the placement-changing point. Then we assemble a
protothread with one fragment by calling functions of the
logic blocks. At the end of a thread, it issues an event to
the send thread for data transmission and yields for other
threads. Moreover, based on our time profiling, the graph
fragments could be further segmented if it contains several
time-consuming tasks for system health.

V. EVALUATION

In this section, we evaluate the performance of EdgeProg
in various aspects.

A. Experiment Setup

We summarize the five macro-benchmarks to evaluate our
system in Table I: two sensing applications and three real-
world applications.

• Sense. A common sensing application with outlier detec-
tion using algorithms proposed in [23] and data compres-
sion using the LEC algorithm [24].

• MNSVG. A weather forecast application using an
MNSVG model proposed in [3] to predict temperature
and humidity values.

• EEG. Using the EEG signal to detect seizure [25] ,
taken from Wishbone [2]. It employs ten parallel channels
to process the EEG signal with seven order wavelet
decomposition in each channel.

• SHOW. Detecting and classifying the trajectory of the
device with IMU information and random forest algo-
rithm [26].

• Voice. Counting the number of speakers with signal
processing and clustering algorithms [27].

Baselines Definition. Here we describe the state-of-the-art
edge(cloud)-device interactive system alternatives that we use
to illustrate the advantages of EdgeProg.

• RT-IFTTT [3]. The server does all of the computation.
IoT devices only need to report the sensor value or take
actions under the server’s command.

• Wishbone(0.5, 0.5) [2]. Wishbone is a partitioning system
for sensornet applications whose goal is to minimize a
combined objective of CPU and network workload, which
could be formulated with two weights as (a cpu+b net).
Here (0.5, 0.5) stands for a = b = 0.5, which indicates
CPU and network are of equal importance in this baseline.

• Wishbone(opt.). During our preliminary experiment, we
notice that better latency performance could be achieved
by altering the a and b parameters. Hence, we conduct
evaluations with tuning the parameters with 0.1 step, and
record the best performance as this baseline.



TABLE I
IMPLEMENTED BENCHMARK APPLICATIONS.

Name Application Sensor # Operators Algorithms
Sense Outlier Detector [23], [24] Temp., Light 8 Average, Matrix multiplication, LEC compression

MNSVG Weather Forecasting [3] Temp., Humidity 4 MNSVG
EEG Seizure Onset Detect. [25] EEG 80 Wavelet decomposition, SVM

SHOW Smart Handwriting [26] Accel. 13 FFT, Random forest
Voice Speaker Count [27] MIC 10 MFCC, Pitch estimation, Unsupervised clustering
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(a) Speedup under Zigbee network.
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(b) Speedup under WiFi network.

Fig. 7. Latency speedup achieved by EdgeProg normalized to the worst-performed baseline. EdgeProg reduces the task latency by 18.2% compared with
WishBone(opt.) and 31.0% with RT-IFTTT on average.
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(a) Sense
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(b) MNSVG
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(c) EEG
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(d) SHOW
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(e) Voice
Fig. 8. Latency of each macro-benchmark at available cutting points under both networks. Cutting points are arranged to assure that fewer operators are
executed locally when point number gets bigger. We omit the bigger cutting points part of Voice and EEG due to the continuous growth of latency.

B. Latency Reduction

Figure 7 depicts the task makespan of five macro-
benchmarks under Zigbee (on TelosB node) and WiFi (on
Raspberry Pi) network. We use a laptop with 2.8GHz i7-
7700HQ CPU and 16GB memory as our edge server. Edge-
Prog achieves a 20.96% reduction on average across all
settings, and up to 99.05% reduction in Voice benchmark
compared with Wishbone(0.5, 0.5). Moreover, we have two
main observations according to the results:

(1) Speed up percentage varies considerably among bench-
marks. For example, EdgeProg surpasses for Voice and EEG
benchmarks under both settings while falls flat for MNSVG.
This variation mainly due to computation complexity and
network demands of each benchmark. As illustrated in Table
I, EEG is the most complex one with 80 operators, which
promises a larger optimization space to reduce the latency.
Furthermore, each order of its wavelet decomposition halves
input data, which reduces the transmission time of its output
and makes it more profitable to local execution. Nevertheless,
EdgeProg struggles against SHOW with 13 operators under
WiFi, mainly due to the parallel layout of its operators, which

leads to fewer valid cut points to partition. As for MNSVG,
a small number of its operators results in its available cut
points is only three. Under this circumstance, EdgeProg still
captures the best cut point for ZigBee, which is neglected
by baseline methods. In summary, data-reduction algorithms
contribute more to latency reduction.

(2) EdgeProg under ZigBee network outperforms than un-
der WiFi. Under the ZigBee network, EdgeProg reduces the
makespan by 30.96%, 45.80% and 18.19% compared with
three baselines, individually. Nevertheless, reduction percent-
ages drop to 0.07%, 30.58% and 0.13% when using WiFi. To
further study this observation, we established a ground truth
by exhaustively running each benchmark at every available
cutting points on our testbed. Figure 8 illustrates the results.
The star icons indicate EdgeProg’s choice for the best cutting
points. We can infer from the figures that as the network speed
grows, data transmission time decreases and data processing
time becomes dominant. Hence, optimization algorithms pre-
fer to offload tasks at early stages, which could be deduced
from that the star icons on WiFi bars are more to the left
than ZigBee ones. Consequently, the dominant strategies are
more concentrated on the left, which means the decrease of
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(a) Compare with virtual machines
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(b) Compare with scripting languages

Fig. 9. Run-time efficiency comparison between EdgeProg and design alternatives.

TABLE II
DISSEMINATION SIZE AMONG PLATFORMS (BYTE).

App. TelosB MicaZ Raspberry Pi
Sense 4344 6384 4004

MNSVG 2756 3460 2280
EEG 4500 6276 3920

SHOW 22952 28660 14540
Voice 32076 42416 19336

optimization space and leads to closer performance among
baselines.

C. Overhead

Dissemination Overhead. The dynamic linkable and load-
able binary sizes of the macro-benchmarks on three platforms:
TelosB (TI MSP430), MicaZ (AVR ATMega128) and Rasp-
berry Pi 3B+ (ARM Cortex-A53) supported by EdgeProg is
summarized in Table II.

We can see from the data that the binary size of SHOW and
Voice is much bigger than other benchmarks, which is mainly
due to the complexity of the algorithms they adopted such as
FFT, MFCC. Nevertheless, EEG has a smaller size compared
with its large number of operators, which is mainly due to each
of its tunnels shares the same procedures, and each procedure
mainly contains one algorithm, wavelet decomposition, with
different parameters.

Run-time efficiency. In this section, we compare the run-
time efficiency of the dynamic linking and loading technique
with its alternatives: virtual machines (VMs) and scripting lan-
guages. To eliminate the inherited overhead brought by differ-
ent implementations, we use five micro-benchmarks from Web
Language Benchmark Game (WLBG). WLBG is a language
benchmark suite maintained by the Debian community. The
five benchmarks we excerpted are Fannkuch problem (FAN),
Matrix multiplication (MAT), Meteor predicting (MET), N-
Body solution (NBO), and Spectral-Norm calculating (SPE).
We use CapeVM [7], a state-of-the-art Java VM developed for
lightweight execution on embedded devices, as the representa-
tive of VM technique. CapeVM proposes various optimization
strategies to accommodate different applications, and we set
up the experiment with three settings: no optimization, only
peephole optimization and all optimizations. Moreover, we
choose two scripting languages: Python (for popular) and Lua
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Fig. 10. Lines of code comparison between Contiki and EdgeProg. The
"Logic", "Network" and "Others" represent the lines of code for expressing
core application logic, inter-device network and others such as definition and
included headers in Contiki source code.

(for lightweight) along with native Java, which is used in
CapeVM, as our design alternatives of scripting languages.

Figure 9 illustrates the experiment result. Due to CapeVM
do not support multidimensional arrays and floating points, the
MET benchmark could not be implemented with CapeVM. As
shown in Figure 9(a), the VM method introduces a massive
loss of run-time efficiency. VM costs more than EdgeProg
when executing the same benchmark by 9.98X on average
and up to 31.32X. As for scripting languages and native Java
illustrated in Figure 9(b), EdgeProg’s dynamic linking and
loading technique still outperforms than alternatives. Python
incurs the most overhead averaged 30.96X and Lua, being
famous for its lightweight, still slows by 6.37X than ours.

D. Programming Language
We intend to compare the lines of code needed to implement

the macro-benchmarks described in §V-A between traditional
Contiki-style and EdgeProg-style. Figure 10 illustrates the
comparison results. Note that due to EdgeProg provides several
data processing algorithms in advance to simplify the develop-
ment procedure, we omit the lines of code for implementing
the algorithms in Contiki-syle source code to achieve fair
comparison and focus more on how EdgeProg helps for
complex device interactions. We can observe that (1) EdgeProg
reduces the lines of code by 79.41% on average. This is
because EdgeProg relieve users of writing complex inter-
device interactions and other grammar necessaries. Moreover,
the virtual sensor and IFTTT abstraction contribute to the lines
of code reduction for application logic. (2) EdgeProg reduces
the development complexity, especially for applications with
more devices. For example, the 80 stages of EEG application
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Fig. 11. Profiling accuracy of high-/low-end devices.

consists of 10 EEG devices, and each device owns eight
stages. Programming 10 devices increases the lines of code
multiple times. While the relatively low reduction percentage
of MNSVG (75.68%), SHOW (67.86%) and Voice (72.94%)
applications are partly due to they need only one sensing
device and an edge device.

E. Profiling Accuracy

The correctness and accuracy of EdgeProg’s latency-
effective partition depend on the profiling method. In this
subsection, we evaluate the accuracy of profiling methods for
both high- (e.g., Raspberry Pi) and low-end (e.g., TelosB)
devices that we employ in EdgeProg.

We use mspsim to profile the applications of TelosB, and
a near cycle-accurate simulator gem5 for modern platforms
such as Raspberry Pi. For gem5, we use the system call
emulation (SE) mode with the compiled binary as input to
avoid the additional overhead of its full-system mode. The
results are shown in Figure 11. mspsim could achieve 90%+
accuracy over 97.6% of test cases. Nevertheless, only 87.1%
cases of gem5 reach 90%+ accuracy, which is mainly due to
the frequency fluctuation of CPUs and background processes
of Raspberry Pi.

VI. RELATED WORK

EdgeProg borrows heavily from existing works. In the
following paragraphs, We discuss three main categories: IoT
application programming, code partitioning and offloading, as
well as edge computing.

IoT application programming. The traditional approach
for IoT programming is device-centric [28], i.e., the applica-
tion logic resides on the IoT devices. For example, developers
may write application-specific sensor data processing or multi-
hop forwarding based on IoT operating systems such as
TinyOS or Contiki OS.

To simplify application programming for multi-device in-
teraction, developers can adopt trigger-action programming
like IFTTT on edge/cloud servers so that the whole app
logic resides on the server. The IoT nodes perform general
functions like sensor data sampling and data transmissions.
IFTTT programming is widely adopted in the industry, such
as Samsung SmartThings and Microsoft Flow. It also attracts

a lot of research attention from academia [3], [15]. For ex-
ample, a recent work, RT-IFTTT [3], enhances the traditional
IFTTT syntax. RT-IFTTT’s key idea is to dynamically adjust
the sensor data polling intervals to satisfy both energy and
real-time constraints. EdgeProg inherits from IFTTT’s server-
centric programming model but differs from existing works in
two important ways. First, we enhance the IFTTT syntax with
special consideration on data-intensive computation. Second,
we enable much more flexible server-device cooperation by
supporting code partitioning and dynamic code loading on
the device, compared with RT-IFTTT which only supports
adjusting data sampling intervals.

In retrospect, a similar work to ours is Tenet [19] in the
sensor network literature. Tenet assumes a two-tier network
architecture consisting of ordinary sensor nodes and master
nodes. Tenet’s principle is to place the application-specific
logic on the master tier using a dataflow program. The master
nodes can dynamically task sensor nodes to process data
locally. In EdgeProg, the edge server plays an equivalent
role to the master nodes. EdgeProg differs from Tenet in the
language design, device-side system support, and performance
optimizations.

Code partitioning and offloading. Code offloading to
heterogeneous IoT nodes needs system support at the device-
side. A virtual machine is a common approach to mask
heterogeneity. There is a rich literature in designing flexible
and efficient VMs on resource-constrained nodes, including
Mate [6], CapeVM [7], JVM, etc. In addition, a large number
of offloading algorithms builds on top of VMs, e.g., Tenet [19],
ASVM [29]. Besides VM, there are other more lightweight
approaches such as Linux containers, RPC [30], loadable
modules [31]. We adopt the loadable module approach in
EdgeProg. This is because execution efficiency is critical for
energy-constrained IoT nodes and native code runs much faster
than VM instructions [4], [5].

There is a rich literature in code partitioning and offloading
algorithms for performance optimizations. LEO [32] presents
an offloading algorithm targets for mobile sensing applica-
tions. LEO makes use of domain specific signal processing
knowledge to smartly distribute the sensor processing tasks
across the broader range of heterogeneous computational re-
sources of high-end phones (CPU, co-processor, GPU and the
cloud). LEO achieves fine-grained energy control by exposing
internal pipeline stages to the scheduler. Queec [30] takes
the user-perceived quality of experience (QoE) into offloading
decision and makes efforts to achieve the lowest latency.
Wishbone [2] presents a code partitioning algorithm among
resource-constrained sensor nodes and the server to process
data-intensive applications. EdgeProg shares similarities with
many existing algorithms to optimize performance metrics
such as latency or energy. However, EdgeProg uses a differ-
ent formulation considering multiple rules execution, cached
values, and concurrent execution on different IoT nodes.

Edge computing systems. EdgeProg runs on existing edge
platforms, focus on programming IoT nodes connected to
the edge. Most existing work of edge computing focuses on



how to program the edge itself. In ParaDrop [33], the edge
service deployment is initiated and controlled by a cloud
server. ParaDrop employs the container technology for the
concurrency and isolation between edge services.

As for programming the edge-connected nodes, EveryLite
[34] proposes a lightweight scripting language (37KB of core
runtime size) extended from Lua for developers to build
applications. Nevertheless, EdgeProg chooses the native C ap-
proach to further reduce the run-time overhead. Furthermore,
EveryLight only focuses on programming one node, while
EdgeProg also takes the edge device and connected nodes into
consideration. Considering the coordinated programming for
both the edge and nodes, the most similar and recent work
is DDFlow [35]. Its idea borrows from the existing macro-
programming approaches [13], [14], [36], which aim to build
applications in the whole network point-of-view (POV) rather
than per-node POV. DDFlow presents a visual programming
interface for developers to state their application as a task
graph with Node-RED. EdgeProg employes a more declarative
way with a domain-specific language rather than graphical
programming, and achieves the lowest latency even in the
multi-rule situation while DDFlow only considers optimizing
one application per time.

VII. CONCLUSION

This paper presents EdgeProg, an edge-centric programming
system for relieving developers from detailed implementations
by automatically partitions, generates, disseminates and loads
the program. In EdgeProg, we provide developers, especially
non-experts, with an easy-to-use yet expressive programming
language. Build upon the global view of our language, the
code partitioner finds the most efficient placement for each
part of the application through an ILP formulation, which
could be efficient and optimally solved. The key insight is
that we make the best use of the computation ability of each
device to achieve latency reduction. Evaluations show that
EdgeProg could reduce the task execution latency by 31.65%
for ZigBee networks and 10.26% for WiFi networks. Also,
EdgeProg reduces the lines of code by 79.41%.
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