
WIPROG: A WebAssembly-based Approach to
Integrated IoT Programming

Borui Li, Wei Dong and Yi Gao
Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, China

Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China
Email: {borui.li, dongw, gaoyi}@zju.edu.cn

Abstract—Programming a complete IoT application usually
requires separated programming for device, edge and/or cloud
sides, which slows down the development process and makes the
project hardly portable. Existing solutions tackle this problem
by proposing a single coherent language while leaving two issues
unsolved: efficient migration among the three sides and the
platform dependency of the binaries.

We propose WIPROG, an integrated approach to IoT appli-
cation programming based on WebAssembly. WIPROG proposes
an edge-centric programming approach that enables developers
to write the IoT application as if it runs on the edge. This
is achieved by the peripheral-accessing SDKs and annotations
specifying the computation placement. WIPROG automatically
processes the program to insert auxiliary code and then compile
it to WebAssembly. At runtime, WIPROG leverages dynamic code
offloading with compact memory snapshotting to achieve efficient
execution. WIPROG also provides interfaces for the customization
of offloading policies. Results on real-world applications and com-
putation benchmarks show that WIPROG achieves an average
reduction by 18.7%~54.3% and 20.1%~57.6% in terms of energy
consumption and execution time.

I. INTRODUCTION

Developing an entire IoT application usually involves drasti-
cally different technologies and programming techniques at the
device, edge and/or cloud sides. This separated programming
at each side not only slows down the development process,
but also makes the project code hardly portable to other appli-
cations due to the increasingly heterogeneous IoT platforms.

Therefore, researchers have proposed integrated program-
ming for developing IoT applications. For example, TinyLink
2.0 [1] integrates device, cloud and client (mobile end) pro-
gramming using a single coherent language with a variety
of techniques such as TinyApp encapsulation, virtual sensor
mechanism, and dynamic energy optimization.

Two significant issues remain unsolved. First, the code
cannot seamlessly migrate (code offloading) among the three
sides due to different runtime at different sides. For example,
the edge and cloud can support Linux OS while the device
can only support the Arduino runtime. This limitation not
only decreases programming flexibility but also severely limits
the possible performance improvements code offloading could
offer. Second, the device code is not fully portable. The device
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code of TinyLink 2.0 can only be portable to platforms that
the TinyLink compilation toolchain supports.

At first glance, these two issues can be easily addressed
by installing a common, lightweight runtime engine, e.g.,
JVM [2], [3] or JavaScript engine [4], [5], at different sides.
However, existing runtime engines incur too much overhead
for resource-constrained IoT devices. For example, the per-
formance degradation of the JavaScript engine compared with
the native approach on IoT devices is over 100× [6].

In this paper, we advocate WIPROG – a novel approach to
integrated IoT programming motivated by WebAssembly [7].
Recently, WebAssembly arises as a promising technology for
next-generation Web applications. It is a low-level bytecode
format that is designed to be portable across architectures and
exhibit near-native performance. The goal of WebAssembly is
to serve as a common compilation target for various source-
code level languages that can run in a browser. As such,
WebAssembly is an ideal solution to address the above-
mentioned two issues. It is, however, challenging to adopt
WebAssembly into integrated IoT programming directly.

Challenge 1: What is the programming interface we offer
to integrated IoT programming? WebAssembly is just an
underlying technique to run an intermediate machine code.

Solution 1: WIPROG provides an edge-centric approach
for integrated programming. The edge-centric means devel-
opers could write a monolithic program that contains the
whole application logic for device, edge and/or cloud as
if it is developed only for the edge. To be more specific,
the program is written in native C/C++ language with the
peripheral-accessing APIs (for the device-related operations)
and attribute-based annotations (to specify the placement of
the operation) provided by WIPROG. The annotated program
is processed and compiled to WebAssembly modules by the
WIPROG LLVM-based toolchain.

Challenge 2: How does the code can be efficiently offloaded
among three sides?

Solution 2: WIPROG allows applications to define "re-
motable" functions (via the wiprog_remotable annota-
tion) that could be offloaded among three sides. At runtime,
WIPROG leverages the offloading policy and performance
profiles (e.g., network condition, execution time on different
devices) to make the offloading decision. Once decided to
offload, WIPROG breaks the normal execution flow of the
WebAssembly module through a table-based interception ap-



proach, records the necessary information (e.g., program states
and function parameters) and calls the remote function by
remote procedure call (RPC). Furthermore, WIPROG proposes
a compact memory snapshotting mechanism to reduce the net-
work shipping cost when offloading WebAssembly functions.

Challenge 3: How to enable the customization of offload-
ing policies to meet different demands and facilitate further
researches?

Solution 3: WIPROG decouples the offloading policy from
the offloading handling framework. By taking advantage of the
dynamic linking technique, the offloading policy is designed
as a loadable module of WIPROG. The offloading handler
is notified with the decision via the module’s return value.
WIPROG supports adding supplementary data sources to meet
the diverse requirement of customized policies. Both the built-
in profiles (e.g., runtime bandwidth, offline-profiled execution
time) and the additional data sources could be accessed via
the APIs provided by WIPROG.

We implement WIPROG and evaluate its performance ex-
tensively. Results show that: (1) Compared with the state-
of-the-art approach [4], WIPROG achieves 18.7%~54.3% and
20.1%~57.6% average performance gain in terms of energy
consumption and execution time, respectively. (2) WIPROG
incurs up to 3.3% runtime overhead, which is relatively low
and acceptable. (3) The policy customization interfaces of
WIPROG could be used to express various offloading policies,
regardless of the policy is executed online or offline. WIPROG
is publicly available on GitHub1.

II. BACKGROUND AND WIPROG USAGE

In this section, we introduce the characteristics of We-
bAssembly that motivate us to explore its potential usage in
IoT programming and present the usage of WIPROG.

A. WebAssembly Background

Why WebAssembly? WebAssembly [7] is a binary in-
struction format developed by a group of browser vendors.
Among the many properties of WebAssembly, the portability
and runtime efficiency are the most attractive features for
IoT applications. The portability of WebAssembly is two-
fold. (1) For programming languages, each language with an
LLVM frontend could be compiled into WebAssembly, such
as C, C++, Rust and Go [8]. (2) For hardware architectures,
WebAssembly is designed to utilize the common hardware
capabilities available on a wide range of platforms, including
edge and IoT devices. For the runtime efficiency, we conducted
preliminary experiments comparing WebAssembly with the
native and the existing cross-platform languages (C#, Java)
used by state-of-the-art computation offloading approaches [3],
[9]. We use five benchmarks from the Computer Language
Benchmarks Game (CLBG) [10]; Fig. 1 shows the experiment
results. We can observe that WebAssembly shows comparable
speed (1.47×) against native and outperforms C# and Java by
16.8% and 65.0% on average.

1https://github.com/liborui/WiProg
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Fig. 1. Execution time of WebAssembly (compiled from C++ source), other
cross-platform languages, and native C++ (normalized by Java benchmarks).

1 #include "face_detection.h"
2 #include "wiprog.h"
3 using namespace std;
4
5 __attribute__((wiprog_device_only))
6 vector<unsigned char> camCapture(int w, int d){/*Impl.*/}
7 __attribute__((wiprog_remotable))
8 vector<unsigned char> cvtColor(vector<unsigned char> raw,

int type){/*Impl.*/}
9 __attribute__((wiprog_remotable))

10 vector<seeta::FaceInfo> faceDetect(vector<unsigned char>
img){/*Impl.*/}

11 __attribute__((wiprog_edge_only))
12 void LOG(vector<seeta::FaceInfo> info){/*Impl.*/}
13 __attribute__((wiprog_basic))
14 int main(int argc, char** argv) {
15 // Ommited initialization codes for clarity
16 // 1. Get input from camera device
17 vector<unsigned char> raw_data = camCapture(640, 480);
18 // 2. Convert input to grayscale for detection
19 vector<unsigned char> img_data = cvtColor(raw_data,

COLOR_BGR2GRAY);
20 // 3. Detection function
21 vector<seeta::FaceInfo> faces = faceDetect(img_data);
22 // 4. Log the face infomation
23 LOG(faces);
24 }

Fig. 2. Code snippets of Face Detection Application.

Preliminaries of WebAssembly. The memory model, table
object, and import mechanism of WebAssembly play impor-
tant roles in our design.

The memory model of WebAssembly is referenced as the
linear memory model. As the name suggests, it is physically
organized as a flat vector of bytes. The data is accessed using
the offset from the start of the linear memory at runtime.
The WebAssembly module can only access the linear memory
of its own, which prevents memory leakage and dangerous
operations from the host.

The table object of WebAssembly is a continuous memory
segment that saves function pointers, which is separated from
the linear memory of the WebAssembly module to keep the
fragile function pointers from being tampered at runtime. The
function pointer saved in the table could not be modified by
the WebAssembly module itself during execution because it
can only access the linear memory.

The import mechanism of WebAssembly allows the host
environment to pass an object to the module. The imported
object can be memory or table, which enables the data
sharing between the host and the module. WebAssembly also
supports importing a function, which is useful to extend the
functionality of WebAssembly.

B. WiProg Usage

We excerpt a face detection application written in C++
from an open-source face recognition system as an exam-



ple to illustrate how to develop an IoT application with
multiple devices in an integrated manner. This application
reads raw captures from a camera located on the device,
conducts preparatory RGB-to-grayscale conversion to reduce
the computation complexity, and calls the faceDetect()
function for the bounding boxes of detected faces.

With the traditional separated approach, the IoT device
facilitated with a camera is programmed to capture pictures
and sends them to the server. The edge and cloud server
process the images using pre-installed service binaries or
containers. Following this separated manner, the partition of
the application logic and the data flow between devices should
be handled manually by developers.

Fig. 2 shows the WIPROG code snippets of the face de-
tection application. For developers, WIPROG provides dec-
orative attributes (lines 5, 7, 9, 11) to annotate functions
that could be dynamically offloaded between the edge and
the cloud (wiprog_remotable) or should be placed on a
specific device (e.g., wiprog_device_only). Taking the
annotated code as input, the WIPROG generates the necessary
glue code and helper functions to perform data transfer and
remote execution automatically. Then, the code is compiled
to WebAssembly and disseminated to the edge device for
execution. On each device, the WIPROG runtime backend is
pre-installed to handle the interpretation of WebAssembly and
make the offloading decision for each remotable function with
the pre-defined offloading policy. If the execution reaches the
functions that need to run on other devices (e.g., device-only or
remotable functions), the WIPROG backend will intercept the
execution and perform remote execution via the RPC. Because
the IoT applications are commonly periodically executed, the
WebAssembly module is kept in the destination device after
the migration for further invocation until a new module is re-
ceived to reduce the migration overhead. Note that developers
could also customize the offloading policy with the interfaces
provided by WIPROG instead of the two default policies:
minimizing task execution time or energy consumption.

Unlike the traditional approach, developers could focus on
the overall application logic in an integrated manner without
specifying the data flow and the optimal placement of each
function explicitly.

III. WIPROG OVERVIEW

Fig. 3 depicts the birds-eye view of WIPROG’s system
architecture and functional workflow. The whole WIPROG
framework consists of two subsystems: WIPROG frontend and
backend. WIPROG frontend is designed for doing the prepara-
tory tasks before deployment. After deployment, WIPROG
backends that run on all the devices are responsible for
executing the WebAssembly module and handling the runtime
computation offloading.

A. WiProg Frontend
As shown in Fig. 3, WIPROG frontend compiles the applica-

tion code together with the customized offloading algorithms
(if exists), and does offline profiling of the application code
for the backend.
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Fig. 3. System overview of WIPROG.

Application code. The application code is written in C/C++
language with the attribute-based annotation and peripheral-
accessing APIs provided by WIPROG to specify whether
the function is remotable or must be located on a specific
device. The WIPROG toolchain takes the annotated application
code as input, generates auxiliary code, and compiles the
input to WebAssembly modules. Detailed features of WIPROG
annotations and toolchain are described in §IV-A.

Customized offloading policy. WIPROG also provides
programming interfaces that allow developers to customize
offloading policies. The policy compiler is responsible for
compiling the customized offloading policy to a loadable
binary module. The module is then transmitted and loaded
by the WIPROG backend. We will specify the interfaces and
detailed workflows in §IV-C.

Offline profiler. It is used to profile the execution time of
each function in the input code. The offline profiler executes
the source code with timestamp instruments to acquire the
timing data. Collecting data on the real edge or IoT device
could be error-prone (e.g., when handling the serial outputs)
or sometimes infeasible due to the absence of the hardware.
Hence, WIPROG uses near cycle-accurate simulators such as
gem5 [11], [12] for profiling without real devices. Our offline
profiler also captures the variation of the input size by profiling
with different input sizes and generates a regression model for
each function.

B. WiProg Backend

The WIPROG backend, as illustrated in Fig. 4, includes core
and customizable modules.

Core modules. Once the WebAssembly module requires to
call a remote function, the offloading handler intercepts the ex-
ecution of the module and snapshots necessary program states.
Then the remote execution proxy sends the WebAssembly
module together with the snapshot to the target device and calls
the remote function via RPC. Breaking the control flow and
computing migration with the program states of WebAssembly
faces non-trivial challenges, which we will explain in §IV-B.

Customizable modules. Despite providing on-device sup-
port for the customized offloading policy, the customization
modules of WIPROG backend also employs a built-in runtime
profiler to capture the environmental information (i.e., band-
width, round-trip-time) to facilitate the intelligent decision
of offloading policies, which is similar to [13]. Moreover,
developers may attach customized data sources such as energy
consumption and signal strength indicators to enable various
offloading policies [9], [14], which we will describe in §IV-C.
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Fig. 4. Illustration of WIPROG backend.

IV. WIPROG DESIGN

In this section, we will first present the programming
interface for developers to write integrated IoT applications in
an edge-centric manner. Then we will describe how WIPROG
achieves runtime offloading and reduces the network shipping
cost. Finally, we demonstrate how WIPROG supports devel-
opers to customize the offloading policy.

A. WiProg Programming Model

Edge-centric programming interface. In order to support
the edge-centric programming for integrated IoT applications
and reduce the labor work for porting existing codebases,
WIPROG provides developers attribute-based annotations to
specify the property (e.g., device-only or remotable) of the
functions. Furthermore, to support the programming for IoT
devices, WIPROG is also equipped with peripheral-accessing
APIs due to the lack of device-related interfaces in the We-
bAssembly,

As shown in Fig. 2, the annotations are built on the top of
the function attributes (e.g., with __attributes__ label in
C/C++). The reason for using compiler-compatible attributes
rather than simple annotations (e.g., @remote) as existing
works [3], [15] do is simple: it helps us to perform a more
fine-grained and reliable source code processing with the help
of the token stream generated by the compile. The annotations
could be classified into monopolized-placement and shared-
placement attributes.
• Monopolized-placement attributes. These attributes (e.g.,
wiprog_device_only) are usually used for the func-
tions that (1) depend on a specific hardware, e.g., cameras
on the end device, or (2) output the final result to the
desired device.

• Shared-placement attributes. The attributes of this kind
include wiprog_remotable and wiprog_basic.
The former attribute is used for the functions that
could be offloaded between multiple devices. The
wiprog_basic is the default attribute, which means
the corresponding function is neither bond to a dedi-
cated device nor remotable. The functions with the basic
attribute will remain as is without being modified for
remote execution.

The attribute-based programming provides enough information
to enable the WIPROG toolchain for further processing.

To compensate for the lack of IoT device-related interfaces
in WebAssembly, WIPROG provides the peripheral-accessing
APIs. According to our preliminary investigation of popu-
lar IoT development websites [16]–[18], we recognize three

classes of APIs: digital I/O, analog I/O, and communication-
related ones (e.g., UART) are commonly used and cover
89.78% of the total APIs we have investigated [19]. Hence, in
WIPROG, we provide developers with the three classes of APIs
for edge-centric programming. The peripheral-accessing APIs
are the encapsulation of hardware-specific APIs on different
hardware platforms and operate with the function import
mechanism of WebAssembly.

Automatic code generation. Taking the annotated code
as input, the WIPROG toolchain automatically checks the
legitimacy of the attributes, completes the functions that are
not manually annotated, generates necessary auxiliary code,
and compiles the generated code to WebAssembly modules.
Hence, besides the compiler, the WIPROG toolchain includes
an automatic attribute processor and a code generator.

It is tedious for developers to manually annotate all the
functions used in the application, especially for a large project.
Incautiously annotated code can incur unnecessary data trans-
mission that triggers performance degradation or even execu-
tion failure due to the lack of critical functions. For example,
we call it an illegitimate assignation if a hardware-related func-
tion is assigned with the "edge-only" attribute. The attribute
processor checks if existing function attributes are legitimate
based on several pre-defined constraints, and assigns attributes
to the functions that are not manually annotated, as illustrated
in Algorithm 1. Firstly, WIPROG generates the call graph of
the input code for the parent/child function relationship, which
is used in the remainder of the algorithm. Initially, all of the
unlabeled functions are assigned to "basic" by default (line 3).
The legitimacy-check (lines 4-10) examines the attributes with
the following constraints: (1) Functions that access specific
features of a device must be pinned to the device (line 5).
(2) The child functions of those with monopolized-placement
attributes must be pinned to the same device exclusively
(lines 6-8). (3) To prevent the nested offloading, the child of
remotable functions must not be remotable (line 9). The nested
offloading incurs additional transmission overhead [2], which
is harmful to the performance of an application.

The code generator takes the fully annotated code as input
and reconstructs the compilable code for each device. Taking
the code for edge device as an example, it includes the
functions (and corresponding libraries) with "edge only" and
"basic" attributes. WIPROG reconstructs the function calls
with non-edge attributes as an RPC stub in the generated
code and keeps the function bodies as-is for the invocations
after WebAssembly migration. For the remotable functions,
our code generator constructs a helper function that wraps
the context capturing/restoring code and the original function.
The detailed design of the helper function and the offloading
procedure are presented in §IV-B.

B. Lightweight Offloading Handler

To enable the runtime offloading against the sandboxed
execution of WebAssembly, WIPROG must be able to address
the following questions: (1) How to intercept the execution
flow of a WebAssembly module for remote execution? (2)



Algorithm 1 Automatic attribute processing algorithm.
Input: The set of functions in the application (F), except the

entry point of the application (e.g., main()).
Output: The set of functions labeled as "device only" (Adev),

"edge only" (Aedge), "cloud only" (Acld), "remotable" (Ar),
and "basic" (Abasic).

1: Generate the call graph of F for the remaining operation.
2: Initialize Adev, Aedge, Acld , Ar, Abasic using manually

assigned attributes.
3: Abasic← f∪Abasic, ∀ f ∈ {F(Adev∪Aedge∪Acld∪Ar∪Abasic).
4: for f ∈ F do
5: return error if f is hardware-dependent but f /∈ Adev.
6: return error if f ′∈Adev is the parent of f ∈Aedge∪Acld .
7: return error if f ′∈Aedge is the parent of f ∈Adev∪Acld .
8: return error if f ′∈Acld is the parent of f ∈Aedge∪Adev.
9: return error if f ′ ∈ Ar is the parent of f ∈ Ar.

10: end for
11: for f ∈ Abasic do
12: Adev← f ∪Adev, if f ′ ∈ Adev is the only parent of f .
13: Aedge← f ∪Aedge, if f ′ ∈ Aedge is the only parent of f .
14: Acld← f ∪Acld , if f ′∈Acld is the only parent of f .
15: end for
16: return Adev, Aedge, Acld , Ar, Abasic.

1 (module
2 ...
3 (import "env" "table"(table 2 anyfunc))
4 ...
5 (func $main (result i32)
6 ...
7 (call_indirect (type 0)(i32.const 0))
8 ...
9 )
10 ...
11 )

1 (module
2 ...
3 (func $main (result i32)
4 ...
5 call $foo
6 ...
7 )
8 ...
9 )

Original WebAssembly Module

WIPROG Re-constructed Module

# Entry Table Element
0 $foo/$foo_helper

1 …

Modi
fy

Imported Table Offloading Policy
(Sec. IV-C)

Fig. 5. Illustration of the control flow interception approach of WIPROG.

How to pack/unpack the states and parameters of a remotable
function?

Lightweight execution flow interception. For the first
question, we designed a lightweight execution flow intercep-
tion approach based on two specific features of WebAssembly:
table and import.

As shown in Fig. 5, foo is a remotable function, and
WIPROG generates the helper function of foo for cap-
turing and restoring the function context. WIPROG firstly
reconstructs the compiled WebAssembly binary before the
deployment by (1) import a table from the execution host
(i.e., WIPROG backend) as line 3 of the reconstructed module
in Fig. 5, and (2) substitute the direct call operation of
all the remotable function by call_indirect which is
a WebAssembly binary instruction that uses the function
signature type (type 0 in our example) and the number of table
entry (#0 in our example) to call the corresponding function.
At runtime, the content of the imported table is modified
by the offloading policy, e,g., assigning the table element to

lm[0] lm[&glo_var1] lm[&func_param1]lm[&glo_var2]

WebAssembly Module

WIPROG Backend

0 &glo_var1 &func_param1&glo_var2

Imported Linear Memory

Fig. 6. The compact memory snapshotting approach of WIPROG.

$function_helper to enable remote execution.
With our interception approach, the offloading policy is ex-

ecuted asynchronously and decoupled from the migration pro-
cedure. This asynchronism and decoupling enable developers
to use complicated offloading algorithms without considering
the runtime performance degradation.

Compact memory snapshotting. To achieve remote ex-
ecution, the most recent work on WebAssembly offloading,
MWW [4], migrates the entire linear memory to the desti-
nation, which dramatically increases the transmission over-
head because only a small fraction of the linear memory is
necessary for remote execution. Hence, a compact memory
snapshotting approach is necessary for efficient offloading. We
would like to borrow the existing partial runtime snapshot-
ting approaches [2], [20] which directly packs the function
stack for offloading. Nevertheless, they are not applicable in
WIPROG because the function stack is neither stored in the
linear memory nor even accessible by the module itself, as we
introduced in §II-A.

Hence, we propose a compact memory snapshotting ap-
proach for WebAssembly to only capture the necessary data
when offloading. Firstly, as we stated in §IV-A, the WIPROG
toolchain performs program analysis to obtain the static in-
formation (e.g., type and length) of the global variables and
input/output parameters for each remotable function. Beyond
the static information, WIPROG also logs the dynamic infor-
mation such as the memory addresses of each variable and
sizes of the dynamically allocated variables with the generated
code inside the helper function. Hence, with the help of the
import mechanism, we build a shared memory region between
WIPROG backend and the WebAssembly module. At runtime,
the WIPROG backend creates the snapshot using the necessary
global variables and function parameters by accessing the
shared memory region with the base address and the offset
(i.e., memory addresses inside the WebAssembly module) as
shown in Fig. 6. Then, the snapshot is transmitted along
with the RPC message and restored to the same offset of the
shared memory region on the destination device. Finally, the
corresponding function is invoked on the destination and the
computation results are packed, transferred and restored to the
original device similarly. We will evaluate the reduction of
transmitted size and the overhead of our approach in §VI.

C. Extensible Offloading Policies

In this section, we first present the default cost-aware
offloading policy of WIPROG whose goal is to optimize the ef-



ficiency of the generated multi-device application. Thereafter,
we describe how WIPROG enables developers to customize
the policy with their algorithm even additional data sources.

WIPROG offloading policy. The default offloading policy
of WIPROG is to minimize the overall application execution
cost. To be more specific, WIPROG considers latency or energy
by default when making offloading decisions.

Formally, WIPROG formulates a cost-aware offloading pol-
icy as the 0-1 integer linear programming problem shown
below. Binary variable xi f represents the offloading decision
and I denotes the set of available offloading destination, i ∈ I.
xi f = 1 indicates the function f should be executed on device
i, while xi f = 0 indicates that is not. Ar is the set of remotable
functions, as we stated in § IV-A. Hence, our offloading policy
could be expressed as:

Objective: argmin
xi f

∑
f∈Ar

∑
i∈I

(Ccomp
i f xi f +Cntwk

i f xi f ), (1)

Subject to: ∑
i∈I

xi f = 1,∀ f ∈ Ar, (2)

where Ccomp
i f and Cntwk

i f denote the computational and network
cost of executing f on device i. To be more specific, we
have Ccomp

i f = ti f ,Cntwk
i f =

v f
Bi

when considering latency as the
metric of execution cost, where ti f represents the execution
time of function f on device i, v f denotes the sum of snapshot
size being transmitted back and forth, and Bi denotes the
bandwidth between i and the current device. For minimizing
the energy cost, we have Ccomp

i f = ti f pi f ,Cntwk
i f =

v f
Bi

pntwk
i , where

pi f indicates the average power of executing f on device i and
pntwk

i denotes the average transmission power of device i.
The ti f , pi f and pntwk

i are obtained by the offline profiler of
WIPROG frontend shown in Fig. 3. Bi and v f are measured
during the execution by the built-in runtime resource profiler
of WIPROG backend shown in Fig. 4.

Policy customization. In order to enable the customization
of offloading policies, WIPROG provides the following sup-
ports at system level.

(1) Decoupled design between the customizable policy and
the WIPROG offloading handler. With the help of dynamic
linking technique, the offloading policy is designed as a
loadable module to the core components. The only restriction
of the loadable module is it should expose a core function for
WIPROG backend to invoke. The function prototype is:

vector<int> offloadPolicy(WiProgProfile &profile);

At runtime, WIPROG mounts the policy by dlopen, acquires
the symbols by dlsym, and calls the offloadPolicy()
via function pointers. The offloading decision (i.e., xi f ) is
returned to the offloading handler in the form of a vector of
integers. This design gives developers a considerable degree
of freedom to realize their algorithms even with third-party
libraries.

(2) Data-accessing APIs. The data-accessing APIs are mem-
ber functions of WiProgProfile which serve as the input
parameter of the core function. The built-in profile includes
APIs to retrieve ti f , pi f , pntwk

i , Bi and v f . For example,

developers could get the snapshot length of function foo
via getSnapshotLen(foo). Moreover, the built-in profile
also contains the information generated at compile time, e.g.,
function call graphs. In addition to the intrinsic profiles (e.g.,
bandwidth, execution time), novel offloading algorithms are
more intended to include additional data sources, e.g., [14]
involves the received signal strength indicators (RSSI) for
more accurate transmission time prediction. Towards this,
WIPROG incorporates a built-in database that is managed by
the backend. Developers could manually capture the necessary
data and save the data to the database, and the supplementary
data could be accessed easily via the data-accessing APIs
presented by WIPROG.

We will evaluate the expressiveness of our policy customiza-
tion through three case studies in §VI-C.

V. IMPLEMENTATION

To validate the cross-platform nature of WIPROG, we
implemented the building blocks shown in Fig. 3 and 4 on
three different ISAs: Xtensa [21] (a post-RISC ISA targeted
at IoT devices), Arm AArch64 [22] (generally adopted in
edge devices) and x86-64 (dominate in cloud servers). Note
that our implementation is extensible to other platforms as
our implementation is based on native C++ code and has
no dependency on other binary-only libraries that could not
be easily ported to a new platform. Altogether, our WIPROG
prototype consists ~6,000 lines of code.

WIPROG frontend. Our WIPROG compilation toolchain
is built on top of the LLVM project [8]. We modify the
clang compiler to support our attribute-based programming
interface and perform the static analysis to obtain the necessary
information for the offloading handler. The customized policy
is compiled with -ldl to enable the dynamic linking and
loading of policy at runtime.

WIPROG backend. The remote execution proxy of
WIPROG is built atop of the gRPC framework [23] which
uses protobuf [24] for message serialization. Compared with
other alternatives [25], [26], gRPC outperforms in the network
aspect due to its compact message format, which is important
for WIPROG as the snapshot size is generally large.

We leverage an open-source runtime, Wasmer [27], with
just-in-time (JIT) compilation to execute WebAssembly and
we apply our offloading handler techniques to it on the edge
and cloud device. For the IoT devices, we use wasm3 [28]
interpreter instead of Wasmer because its JIT compilation is
too resource-hungry for resource-constrained IoT devices.

VI. EVALUATION

In this section, we evaluate WIPROG to answer the follow-
ing three questions: (1) Does WIPROG achieve better perfor-
mance than existing approaches at runtime? (2) What is the
runtime overhead of WIPROG? (3) Is the policy customization
approach of WIPROG flexible enough to implement various
offloading algorithms?



A. Runtime performance

Hardware components. We evaluate the runtime perfor-
mance of WIPROG on a variety of devices: we use Xtensa
EPS32 as the IoT device, Raspberry Pi 4B+ (RPI for short) as
well as NVIDIA Jetson TX2 (TX2 for short) as edge nodes,
and an x86_64 server (as the cloud server). The IoT devices
are wirelessly connected to the edge devices, then connected
to the cloud server through the backbone network.

Benchmarks. To be comprehensive, we use two sets of
benchmarks in our evaluation: application benchmarks and
micro-benchmarks. The application benchmarks are used to
illustrate how WIPROG works in the real-world IoT appli-
cations, including a face detection application that we used
as the example in §II-B (Fig. 2) and an edge smoothing
application based on [29]. For micro-benchmarks, we use the
PolyBench/C [30] that contains 29 independent computational
kernels to evaluate the performance of WIPROG on various
popular algorithms.

Baselines definition. Here we introduce commonly found
offloading alternatives that we used to compare the perfor-
mance of the WIPROG.
• AllEdge: the raw data is collected by the IoT device, then

transmitted to the edge device for all the computation.
• AllCloud: similar to the AllEdge, while all the computa-

tion is performed on the cloud server.
• MWW [4]: the most recent work that dynamically offloads

the JavaScript and WebAssembly between the edge and
cloud. We ported its core WebAssembly migration ap-
proach in our framework for a fair comparison.

We use the default offloading policy of WIPROG stated in
§IV-C. The metrics used for comparison are task execution
time and energy efficiency.

Results of application benchmarks. Fig. 7 and 8 show
the results, which are normalized to the AllEdge baseline for
clarity. Overall, WIPROG achieves 57.6%, 61.4% and 17.8%
energy improvement and 18.7%, 20.9% and 26.1% latency
speedup on average against MWW, AllEdge and AllCloud,
respectively. To be more specific, we have the following
observations.

(1) WIPROG achieves better performance than the AllEdge
and AllCloud baselines by finding the most appropriate place-
ment for remotable functions. For example, WIPROG exhibits
even lower execution time against both AllEdge and AllCloud
in face detection application. This is because the cvtColor
is assigned to the edge and the faceDetect is offloaded to
the server. Hence, this placement is superior to the AllEdge by
leveraging the immense computing power of the cloud to do
heavy-weight faceDetect, and shortens the latency against
AllCloud by reducing the transmission size by a lightweight
cvtColor function which grayscales the colored picture to
only one channel.

(2) The improvement compared with MWW is mainly
achieved by the reduction of transmitted data. The size of
transmitted data between the edge and cloud is shown in
Table I. We find that WIPROG reduces the data by ~95% and
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Fig. 7. Execution time of face detection application (normalized to AllEdge).
The ? implies the benchmark is decided not to offload.
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Fig. 8. Energy consumption of edge smoothing application (normalized to
AllEdge). The ? implies the benchmark is decided not to offload.

~75% on average for the two benchmarks. This is because
MWW transmits the entire linear memory of WebAssembly
while WIPROG only transmits the useful portion by leveraging
the compact memory snapshotting of WIPROG. Except for the
transmission, the performance gain is also caused by restoring
smaller memory data, which we will further address in §VI-B.

Results of micro-benchmarks. In Fig. 9 and 10, we
compare both the energy consumption and execution time of
WIPROG. In general, WIPROG reduces energy consumption
by 54.3% and shortens the execution time by 20.1% compared
to MWW.

More specifically, we observe that the improvements of
WIPROG on TX2 (energy: 52.9%, latency: 13.9%) are lesser
than those on RPI (energy: 55.5%, latency: 26.2%). The reason
is that the WIPROG is more intended not to offload for TX2
benchmarks, as the computing power of TX2 is better than
RPI. There are 20 out of 29 benchmarks on RPI that are
offloaded, but only 15/29 on TX2. Another observation is
that WIPROG performs better for energy consumption. This is
because the performance gain of WIPROG mainly comes from
the reduction of snapshot transmission time, and the proportion
of data transmission cost using the energy metric is higher than
that using latency metric as the power consumption during
networking is higher than that during computing on the edge
device.

B. Overhead of WiProg

The table lookup time of WIPROG offloading handler and
the memory snapshotting mechanism introduce overhead to
the generated IoT applications. The overhead of WIPROG
could be observed in the benchmarks that decided not to
offload, e.g., the benchmark with mini input in Fig. 8(a) and
the gesummv in both Fig. 9 and 10. In general, the average
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Fig. 9. Runtime performance comparison of micro-benchmarks. The edge device is Raspberry Pi. The ? implies the benchmark is decided not to offload.
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Fig. 10. Runtime performance comparison of micro-benchmarks. The edge device is Jetson TX2. The ? implies the benchmark is decided not to offload.

TABLE I
SIZE OF TRANSMITTED DATA (A.C. STANDS FOR ALLCLOUD).

Face Detection (MB) Edge Smoothing (MB)
Size WIPROG MWW A.C. Size WIPROG MWW A.C.
27 0.12 3.41 0.33 Mini 1.39 5.53 1.38
54 0.24 5.31 0.69 Small 3.17 12.58 3.15
81 0.36 7.01 1.05 Med. 8.31 33.18 8.29
108 0.48 8.59 1.41 Large 35.41 141.56 35.39
135 0.60 10.42 1.77 XLarge 132.73 530.84 132.71
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Fig. 11. Execution time breakdown of the offloaded functions.

runtime overhead is relatively small: only 3.3% and 3.0% on
application benchmarks and micro-benchmarks, respectively.

We further investigate the runtime overhead of WIPROG
by breaking down the execution time of two application
benchmarks with runtime offloading on RPI. We can see from
Fig. 11 that the WIPROG overhead, including the time of table
lookup, snapshot capture, RPC initialization, RPC processing
and snapshot restore, is only a small portion of the entire
offloading process. Among the above sources of overhead,
only the snapshot capture and restore time varies in different
benchmarks. To be more specific, as illustrated in Fig. 12, the
capture and restore time grows linearly with the size of linear
memory, which is reasonable because they need to handle
more data when the linear memory grows. Moreover, the table
lookup overhead is ~0.8ms on RPI and ~1.2ms on TX2, which
is relatively small, as shown in Fig. 13.

	0

	600

	1200

	1800

	1000 	10000 	100000

Ti
m
e	
(m
s)

Size	of	linear	memory	(logscale,	kB)

Snapshot	capture	time
Snapshot	restore	time

Fig. 12. Memory snapshot overhead.

	0

	0.2

	0.4

	0.6

	0.8

	1

	0 	0.5 	1 	1.5

C
D

F

Table	lookup	time	(ms)

Jetson	TX2
Raspberry	Pi

Fig. 13. Table lookup overhead.

1 double rssiEst(double rssi, int txSize){/*Impl.*/}
2 vector<int> offloadPolicy(WiProgProfile &profile){
3 string fName = "faceDetect";
4 pair<int, int> len = profile.getSnapshotLen(fName);
5 vector<double> tFunc = profile.getFuncExecTime(fName);
6 double rssi = profile.getDoubleFromDB("RSSI", "E2C");
7 double tTx = rssiEst(rssi, len.first+len.second);
8 double tRemote = tFunc[1] + tTx;
9 double tEdge = tFunc[0];

10 vector<int> dest(NUM_DEV, 0); //NUM_DEV=2
11 if(tRemote < tEdge){dest[0] = 0; dest[1] = 1;}
12 else{dest[0] = 1; dest[1] = 0;}
13 return dest;
14 }

Fig. 14. Example code of customized offloading policy with Kim et al. [14].

C. Flexibility of WiProg offloading policy customization

We demonstrate the flexibility of the WIPROG’s policy cus-
tomization approach by complementing three recent offloading
algorithms using our programming interfaces. Note that the
potential expressiveness of our customization model is far
from exhaustively covered. In the following, we first describe
our implementation of Kim et al. [14] as an example, and
outline how the other two can be expressed.

Example implementation. Kim et al. [14] makes the
offloading decision using an RSSI based model. The core
code of our implementation is shown in Fig. 14. We simplify
the potential offloading destination to only one edge and one
cloud to keep the clarity, and the example WebAssembly



TABLE II
WIPROG POLICY CUSTOMIZATION SUPPORT AND IMPLEMENTATION OUTLINES OF THREE EXISTING OFFLOADING ALGORITHMS.

Type Usage of built-in profile Additional data sources Algorithm Required control interface
Kim et al. [14] Online TX size, execution time RSSI Regression Decision
LODCO [31] Online TX size, execution time Energy level, power gain Lyapunov opt. Decision, CPU freq., TX power
COPMECS [32] Offline Execution time, Control flow graph / Graph theory Decision

module we use for illustration in Fig. 2. The RSSI data is
measured and saved to the database provided by WIPROG,
and retrieved using the database accessing API of WIPROG
(line 6 in Fig. 14). The execution time on each device and
the snapshot length are accessed from the WIPROGProfile
(lines 4, 5). Then we implemented the core function of [14]
rssiEst which takes the RSSI value and data size as input
and estimates the transmission time (lines 1, 7). Finally,
the offloading decision is returned to the WIPROG backend
through our pre-defined interface, namely the vector dest.

Case studies. Similar to Kim et al., LODCO [31] and
COPMECS [32] could also be implemented with WIPROG.
Table II summarizes the necessary components. The Lyapunov
optimization based offloading algorithm of LODCO could be
implemented with third-party libraries thanks to the flexibility
of the dynamic linking technique we used for loading the
customized policy. Controlling the CPU frequency and the
TX power is beyond the scope of WIPROG, while they
could also be implemented manually and called before the
return of offloadPolicy. The offline decision approach,
COPMECS, could also be realized by directly hard-coding the
decision made before deployment in offloadPolicy.

VII. RELATED WORK

WIPROG builds upon previous research done in integrated
programming and code offloading.

Integrated programming for IoT applications. Integrated
application programming for multiple devices is a popular
topic in IoT researches. The most related and recent work
is TinyLink 2.0 [1], which proposes a structured domain-
specific language (DSL) for developers to write multi-device
applications in one piece of code. An application developed
with TinyLink 2.0 DSL consists of three parts: device, client
and cloud part. Inside the TinyLink 2.0 system, the three DSL
parts are transformed into compilable codes and then compiled
to dedicated binaries of each platform. WIPROG differs from
TinyLink 2.0 in two aspects. 1) Our approach is to enhance
the native programming language with annotations rather than
using DSLs to improve the programmability. 2) TinyLink 2.0
only supports static deployment without runtime offloading.
Another recent work, EdgeProg [33], leverages an If-This-
Then-That (IFTTT) rules based DSL to integrate multi-device
programming. Different from EdgeProg, WIPROG takes the
advantage of WebAssembly’s cross-platform nature to tackle
the heterogeneity problem. DDFlow [34] presents a visual pro-
gramming interface to build collaborative applications across
multiple devices. Its idea borrows heavily from existing macro-
programming approaches [35], [36] in the wireless sensor
network community, which targets to enable the programming
in the whole network point-of-view (POV) rather than per-

node POV. Compared to the macro-programming methods,
WIPROG enables developers to re-use existing code.

Computation migration and code offloading. Several
approaches have been proposed to reduce the latency or energy
consumption by code offloading.

MWW [4] is the most related offloading framework. It
migrates the HTML5 web worker which contains a We-
bAssembly module and the JavaScript code between a mobile
device and edge clouds. MWW achieves runtime migration
by the snapshot mechanism of JavaScript, which is not appli-
cable in other languages. WIPROG exhibits better offloading
performance because MWW offloads all of the linear memory
of the WebAssembly module while WIPROG only trans-
mits the useful portion. Another recent migration approach,
Queec [37], offloads the computation-intensive tasks for low-
end IoT devices. The offloading decision of Queec is made by
considering the device workload and the user-specified QoE
requirement of the task. Different from WIPROG, Queec uses
shared libraries for offloading, which neglects the heterogene-
ity between the end device and the edge.

In retrospect, there is a rich literature for computation
migration and code offloading. In order to address the het-
erogeneity problem, other existing works [2], [3], [9] design
migrating systems based on cross-platform languages such as
Java and C#. CloneCloud [2] and ThinkAir [3] are proposed
to offload Java code between the mobile device and servers
by migrating Java Virtual Machine (JVM). CloneCloud pro-
files the application and makes offloading decisions before
execution, which may be clumsy to runtime environmen-
tal disturbances. ThinkAir focuses on dynamic scaling and
parallel execution of server-side JVMs. MAUI [9] achieves
code offloading by utilizing the reflection mechanism of C#
common language runtime (CLR). Similarly, WIPROG also
leverages the cross-platform characteristic of WebAssembly
to tackle the heterogeneity problem. Nevertheless, WIPROG
achieves better migration performance by using RPC-based
offloading other than VM migration as the related works do.

VIII. CONCLUSION

This paper presents WIPROG, an integrated approach for
IoT application programming based on WebAssembly. With
WIPROG, developers could write the application code in
an edge-centric manner. At runtime, WIPROG dynamically
offloads the functions which are assigned as "remotable" to
achieve runtime efficiency. WIPROG also provides an offload-
ing policy customization approach for developers to imple-
ment new offloading algorithms. Results show that WIPROG
achieves up to 54.3% and 57.6% average gain compared
with the state-of-the-arts in terms of energy consumption
and latency reduction, and the policy customization approach
indeed facilitates the incorporating of new offloading policies.
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