
S2: a Small Delta and Small Memory Differencing
Algorithm for Reprogramming

Resource-constrained IoT Devices
Borui Li, Chenghao Tong, Yi Gao, and Wei Dong

College of Computer Science, Zhejiang University, China
Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China

Email: {borui.li, tongch, gaoyi, dongw}@zju.edu.cn

Abstract—Incremental reprogramming is one of the key fea-
tures for managing resource-constrained IoT devices. Neverthe-
less, existing approaches fall flat in RAM and flask usage due to
the increasing firmware size of contemporary IoT applications.
In this paper, we advocate S2, a differencing algorithm for
reprogramming resource-constrained IoT devices. S2 achieves
small memory and flash footprints by leveraging a topological
sort based in-place reconstruction mechanism and stream recon-
struction technique, as well as smaller delta size by a prediction-
based encoding. Evaluation shows that S2 uses 33.3% less RAM
while reducing at most 42.5% delta size than state-of-the-arts.

I. INTRODUCTION

A majority of IoT devices trade higher computation ability
for a longer battery lifetime. For example, the STM32-H743
microcontroller (MCU) with only 512KB RAM and 2MB
flash, which is widely-adopted in IoT devices, achieves months
of lifetime with a single battery.

System software of the IoT device needs to be regularly
updated for new functionalities or bug fixes. Over-the-air
reprogramming is generally deemed as the critical technology
for IoT device management because it removes human from
the loop of manually re-collecting, "burning" and re-deploying
devices. Furthermore, incremental reprogramming [1] gains
popularity by lowering the networking cost and reducing
the energy consumption. Incremental reprogramming only
transmits the delta between the old and new version to the
device. The delta, including series of copy and add commands,
is generated by a differencing algorithm and typically much
smaller than the complete firmware. Once the delta is received,
a patching algorithm on the device reconstructs the new
version with the old firmware and the delta.

However, due to the higher complexity of IoT applications
nowadays, the firmware size increases dramatically, which
poses new challenges for state-of-the-art incremental repro-
gramming approaches. For example, a firmware with an image
classification algorithm on the aforementioned STM32-H743
MCU consumes 490KB (95.7%) RAM and 1.9MB (95%)
flash. Existing differencing algorithms fail to reprogram under
this circumstance because of (1) Limited RAM. Algorithms
need to read the whole old file to the RAM, which is
unfeasible. (2) Limited flash space. Algorithms typically do
not overwrite the old version in the flash but write the
reconstructed version to a different block because overwriting

may fail some subsequent copy commands for the lack of
necessary data.

To address the above two issues and further reduce the
delta size, we advocate S2, a differencing algorithm with small
footprints. We summarize the contributions as follows:
• To alleviate the flash pressure, S2 leverages an in-place

reconstruction mechanism which allows overwriting the
old file without influencing the successive copy com-
mands. The data dependency among copies is solved by
interchanging and modifying the copy commands in the
original delta using a topological sort based approach.

• S2 proposes a stream reconstruction technique to avoid
reading the whole old version that lowers memory usage.

• S2 further reduces the delta size by compressing the
commands with a prediction-based encoding.

We conduct experiments using binaries from real IoT projects
and results show that S2 uses 33.3% less memory while
reducing at most 42.5% delta size than existing works.

II. THE S2 ALGORITHM

S2 algorithm includes the delta generation algorithm
(S2DIFF) and the reconstruction algorithm (S2PATCH).

Preliminaries of the delta file. Generally, the delta file con-
sists of two kinds of commands: COPY(f , t, l) and ADD(t, l).
The COPY copies l bytes from offset f of old file to offset t
of the new file. The ADD adds l bytes to offset t of the new
file. The additive data bytes are also included in the delta file.

S2DIFF algorithm. Algorithm 1 shows how S2DIFF gen-
erates the delta file. Firstly, S2 uses an existing differencing
algorithm to obtain the original command sets and additive
data. Note that S2 is not bond to a dedicated differencing al-
gorithm, any algorithm that conforms the copy/add mechanism
is feasible. The original command set may fail when used for
in-place reconstruction because data dependencies may exist
among COPYs. Hence, S2 solves it via a topological sort based
approach and perform a prediction-based encoding for the
commands, which we will explain in detail below. Finally,
S2 generates the delta header and concatenates it with the
commands and data compressed by xz.

Topological sort based dependency solving. The COPY com-
mand is executed sequentially when in-place reconstruction.
When a subsequent COPYB uses the data which is overwritten

Algorithm 1: S2DIFF algorithm.
Input: Old binary file Fold , new binary file Fnew
Output: Delta file of the two binaries Delta

1 Apply differencing algorithm on Fold and Fnew to obtain the COPY set
Ccopy, ADD set Cadd and additive data Dadd ;

2 Apply topological sort on Ccopy to solve data dependency;
3 for c(f , t, l) ∈Ccopy do
4 Update f and t using the difference between the predicted value and

real value of f and t;

5 for c(t, l) ∈Cadd do
6 Update t using the difference between the predicted value and real

value of t;

7 hdr← Command count of COPY and ADD, the file offset of additive data
and the MD5 value of delta;

8 ret Delta← (hdr | XZ-compressed Ccopy, Cadd and Dadd);

by a former COPYA, a data dependency occurs. To solve
the dependency, we can manually place COPYB earlier than
COPYA. For a large set of COPYs, we leverage a topological
sort based approach inspired by [2]. We organize the COPY
set as a graph where a vertex denotes a COPY and the directed
edge from A to B denotes A should be executed earlier than B.
Then, we perform topological sort on the graph and generate
the final COPY sequence following the topological order. If
there are cycles in the graph, we break them by modifying
some COPY to ADD in the cycles.

Prediction-based encoding. Each address parameter (i.e., f
and t) in the original COPY(f , t, l) and ADD(t, l) is encoded
with 8 bytes to support the differencing of large files (<4GB).
Nevertheless, we have the observation that the parameters of
the ADD sequence (i.e., t) are monotonically increasing, and
so do the parameters of COPY (before the topological sort).
Hence we re-encode the address parameters with a prediction
model. Given a t of COPY to encode, we predict its value using
several previous ts and encode t in 2 bytes with the residual of
the prediction. In S2, we use the moving average (MA) model
because it efficiently transferred and executed on the resource-
constrained devices with satisfying accuracy. It is worth noting
that the parameters of COPY after topological sort are not
strictly monotonically increasing due to the permutation but
are still increasing to a large extent. Hence, we use more
historical values for COPY in MA to obtain better accuracy.

S2PATCH algorithm. Algorithm 2 illustrates how S2 re-
constructs the binary on the device. When the delta is received,
S2 first calculates its MD5 value to check the integrity of the
delta. Then S2 reads the necessary information from the header
and performs the stream reconstruction which we will describe
below. Finally, S2 reboots the device to the new image.

Stream reconstruction. S2 proposes stream reconstruction to
minimize memory usage. Take the COPY reconstruction as an
example. S2 first decompresses the f , t and l using xz and
recovers the original value of f and t with MA algorithm.
Finally, S2 performs copy following the restored command.

III. EVALUATION

We use eight real IoT projects as the benchmarks to evaluate
the memory usage and the size of generated delta file of
S2. These benchmarks are based on AliOS Things operating

Algorithm 2: S2PATCH algorithm.
Input: Delta file Delta, old binary file Fold
Output: Reprogramming result: Success/Failed

1 if MD5 check of Delta failed then ret Failed;
2 Obtain the command count of COPY ncopy and ADD nadd , and the offset

of additive data oadd via header of Delta;
3 for i← 1 to ncopy do // Stream COPY reconstruction
4 XZ-decompress l and residual of f and t from Delta;
5 Restore the value of f , t from prediction residual and obtain the

entry of COPY ccopy[i](f , t, l);
6 Copy l bytes from offset f of Fold to offset t;

7 for i← 1 to nadd do // Stream ADD reconstruction
8 XZ-decompress l and residual of t from Delta;
9 Restored the value of t from prediction residual and obtain the entry

of ADD cadd [i](t, l);
10 Add the Xz-decompressed l bytes from offset oadd of Delta to offset

t of the device;
11 oadd ← oadd + l;

12 Reboot the device and boot to the reprogrammed image;
13 ret Success;

TABLE I
EVALUATION RESULTS OF S2 ALGORITHM COMPARED WITH THE

BASELINES ON DELTA SIZE AND MEMORY USAGE (UNIT: KB).
Old→New Delta Size Memory Usage

AOS bsdiff S2 AOS bsdiff S2
1 304.3 → 304.3 1.4 0.32 0.32 144 688.6 96
2 551.6 → 551.6 2.4 0.35 0.35 144 1183.2 96
3 304.3 → 338.1 141.9 109.5 105.5 144 722.4 96
4 304.3 → 338.1 142.3 108.6 104.9 144 722.4 96
5 382.9 → 88.2 292.3 199.8 169.1 144 951.1 96
6 446.9 → 553.0 344.9 154.0 143.0 144 1079.9 96
7 553.0 → 446.9 77.7 84.8 75.2 144 1079.9 96
8 553.0 → 605.3 304.3 245.4 238.3 144 1236.3 96
Avg. var. vs. AOS 0 -38.3% -42.5% 0 +565.3% -33.3%

system (AOS) and classified in two categories: (1) benchmarks
with small changes between versions (#1-#4, e.g., changing
the output period of a serial print application from 1s to 2s),
and (2) benchmarks with major changes (#5-#8, e.g., an HTTP
data upload application in AOS 2.1 to that in AOS 3.0).

We use two baselines to compare with S2: (1) the original
bsdiff featured with the in-place algorithm in [2]; (2)
the default incremental reprogramming algorithm in AOS.
bsdiff [3] algorithm is specifically optimized for binaries
and widely-adopted in the industry (the default differencing
algorithm of Google Play [4]). The AOS achieves incremental
reprogramming for large files by splitting the original new
version and old version to a series of 64KB segment pairs and
performing bsdiff on each pair.

Table I shows the evaluation results. We can observe that
S2 reduces the delta size by 42.5% and 11.0% against AOS
and bsdiff, separately. S2 achieves a 33.3% RAM reduction
compared with AOS. The bsdiff consumes considerable
RAM mainly because it lacks stream reconstruction technique.

Acknowledgment. This work is supported by the Na-
tional Key R&D Program of China under Grant No.
2019YFB1600700.

REFERENCES

[1] W. Dong et al., “Optimizing relocatable code for efficient software update
in networked embedded systems,” ACM TOSN, 2015.

[2] R. Burns et al., “In-place reconstruction of version differences,” IEEE
TKDE, 2003.

[3] C. Percival, “Naıve differences of executable code,” 2003.
[4] Android Developers Blog, “Improvements for smaller app downloads on

google play,” 2016.

