
Poster: ThingSpire OS: a WebAssembly-based IoT Operating
System for Cloud-Edge Integration

Borui Li, Hongchang Fan, Yi Gao and Wei Dong
College of Computer Science, Zhejiang University, and,

Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, China
{borui.li,fanhc,gaoyi,dongw}@zju.edu.cn

ABSTRACT
We advocate ThingSpire OS, a new IoT operating system based on
WebAssembly for cloud-edge integration. By design, WebAssembly
is considered as the first-class citizen in ThingSpire OS to achieve
coherent execution among IoT device, edge and cloud. Further-
more, ThingSpire OS enables efficient execution of WebAssembly
on resource-constrained devices by implementing a WebAssembly
runtime based on Ahead-of-Time (AoT) compilation with a small
footprint, achieves seamless inter-module communication wher-
ever the modules locate, and leverages several optimizations such
as lightweight preemptible invocation for memory isolation and
control-flow integrity. We implement a prototype of ThingSpire OS
and conduct preliminary evaluations on its inter-module communi-
cation performance.

CCS CONCEPTS
• Computer systems organization→ Embedded software.

KEYWORDS
Operating System, Internet of Things, WebAssembly
ACM Reference Format:
Borui Li, Hongchang Fan, Yi Gao andWei Dong. 2021. Poster: ThingSpire OS:
a WebAssembly-based IoT Operating System for Cloud-Edge Integration.
In The 19th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’21), June 24–July 2, 2021, Virtual, WI, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3458864.3466910

1 INTRODUCTION
The recent years have witnessed the proliferation of Internet of
Things (IoT) technology. Moreover, cloud and edge computing are
widely adopted to process the massive data generated by IoT. This
computing paradigm leads to a substantial integration of the cloud,
edge and IoT applications. Recent advances of computation offload-
ing further improves the application performance by making full
use of computing resources. Hence, the cloud-edge-IoT integration
is not only the data exchange among devices, but also the portability
and interoperability of computing services and modules.

Nevertheless, the evolution of IoT operating system stalls in the
recent years and could not keep pace with the growing requirement

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8443-8/21/06.
https://doi.org/10.1145/3458864.3466910

of IoT applications. For example, using the existing OSes such as
Zephyr and RIOT [1] to build an integrated IoT application, devel-
opers should follow a separated programming style. This separation
indicates that the application logic on different devices should be
divided clearly and implemented independently by the developers.
Nevertheless, the fixed partition of logic leads to inefficiency and
the heterogeneity among cloud, edge and IoT devices makes this
separated style error-prone.

We propose ThingSpire OS, a novel IoT OS based on WebAssem-
bly tailored to cloud-edge integration. WebAssembly is a bytecode
format being introduced by several browser vendors in 2017. It is
designed to serve as a common compilation target for high-level lan-
guages and execute with near-native performance on a plethora of
platforms. This efficiency and portability makes it an ideal underly-
ing technology of ThingSpire OS. However, building such an OS for
cloud-edge integration with WebAssembly faces unique challenges.
We highlight the challenges and the corresponding solutions as
follows:

Challenge 1: How to design an OS that provides coherent exe-
cution environment with cloud and edge at system level and runs
efficiently on even resource-constrained devices?

Solution 1: By design, we consider WebAssembly as the first-
class citizen in ThingSpire OS, which means all the applications
is compiled to WebAssembly modules and we implement the We-
bAssembly runtime inside the OS kernel. Furthermore, we introduce
the Ahead-of-Time (AoT) compilation ofWebAssembly on resource-
constrained IoT devices to facilitate the runtime efficiency. To the
best of our knowledge, ThingSpire OS is the first to bring AoT
runtime of WebAssembly to IoT devices.

Challenge 2: How to achieve seamless inter-module communi-
cation (IMC) considering the modules may locate on the same or
different devices?

Solution 2: Each module of ThingSpire OS could provide ser-
vices being invoked via RESTful-style APIs. A service manager
handles the invocation routing when the modules migrate between
devices and the caller do not need to explicitly specify the actual
placement of callee. We further employ zero-copy optimization and
network stack bypassing to reduce the inter-module communica-
tion overhead.

Challenge 3: Security concern arises when IoT devices tightly
integrate with cloud and edge services via network. How to support
fault tolerance and memory access safety at system level?

Solution 3: We use a grant based memory sharing mechanism
to ensure fine-grained memory isolation. Furthermore, we leverage
lightweight preemptible invocation to guarantee the timely return
of function calls, and use contract-based interfaces for fault isolation
between modules.

https://doi.org/10.1145/3458864.3466910
https://doi.org/10.1145/3458864.3466910


MobiSys ’21, June 24–July 2, 2021, Virtual, WI, USA Borui Li, Hongchang Fan, Yi Gao and Wei Dong

Common Modules

JS
Engine

CoAPMQTT

Application Modules

JS App.

Python
Engine

Python
App.

C/C++
App.

Network
Stack

HW Dri.

Basic Modules
File Sys.

Log Sys.

OS Kernel

UI/UX

(a) Traditional IoT OS

WebAssembly Runtime Layer

Application Modules

Python→

Basic Modules

Network
Stack

HW Driv.

File Sys.

Log Sys.
OS
Kernel

AoT Runtime

Common Modules

CoAPMQTT

C/C++→Rust →

UI/UX etc.

Module Manager

IMC
Handler

Security
Daemon

(b) ThingSpire OS

Figure 1: System architecture comparison of IoT OSes.

This paper presents the initial design, implemented prototype
and preliminary evaluation of the effectiveness of ThingSpire OS.

2 DESIGN OF THINGSPIRE OS
Figure 1 illustrates the architecture comparison of traditional IoT
OS (we take Zephyr as a representative) and ThingSpire OS. As
an OS tailored to the IoT application with cloud-edge integration,
ThingSpire OS compiles the applications and common modules
to WebAssembly and leverages a WebAssembly Runtime Layer to
support their execution, which is different from supporting cross-
platform languages in the application layer of traditional IoT OSes
(Figure 1(a)). By taking advantage the cross-platform nature of
WebAssembly, these modules could be seamlessly migrated to the
cloud and edge servers. Furthermore, WebAssembly provides basic
isolation between modules, which is a good starting point to protect
the modules in ThingSpire OS from being compromised.

There are four building blocks in ThingSpire OS: AoT Runtime,
Module Manager, Inter-Module Communication (IMC) Handler and
Security Daemon.

The AoT Runtime is responsible to provide execution environ-
ment of WebAssembly. There exist several WebAssembly inter-
preters such as wasm3 [3]. However, these interpreters incur over
10× runtime overhead, which lengthens the active time of IoT de-
vices and shortens their battery lifetime. The AoT Runtime works
as follows: (1) Each time a module is loaded, the AoT runtime com-
piles the WebAssembly bytecode to native assemblies. (2) After
the AoT compilation, our runtime does several optimizations to
eliminate unnecessary native instructions to further speedup the
execution. For example, we remove the consecutive push/pop pairs
such as PUSH(R1) and POP(R1) generated by the translation of two
successive WebAssembly bytecodes because this instruction pair is
redundant in terms of functionality.

The IMC Handler and the Module Manager work jointly for
the efficient IMC in ThingSpire OS. The Module Manager is in
charge of the migration of modules among IoT, edge and cloud.
Once the placement of a module changes, the Module Manager
registers the location to IMC Handler. The IMC Handler processes
all the IMC invocations and dynamically routes the IMCs to the
corresponding destination. For the local IMCs, our handler gener-
ates a non-network bypass to avoid the overhead to go through

	0
	200
	400
	600
	800

1 500 1000 1500 2000

Ti
m

e	
(u

s)

Transmitted	data	size	(Bytes)

Remote(TOS)
Local(RIOT)

Local(TOS)

Figure 2: Performance comparison of remote-IMC and local-
IMC between ThingSpire OS (TOS) and RIOT OS.

network stack. IMC Handler leverages zero-copy optimization for
both remote and local IMCs to further reduce the communication
overhead.

The Security Daemon contains several software-based protec-
tions. Based on the basic inter-module isolation provided by We-
bAssembly, ThingSpire OS focuses on the control-flow integrity
(CFI) and memory isolation on IoT devices without memory man-
agement unit (MMU). To keep the CFI of function invocations across
WebAssembly Runtime Layer (mostly system calls and peripheral
interactions), ThingSpire OS employs a lightweight preemptive ex-
ecution technique to guarantee the timely return of function calls,
which guarantees the invocations are not perpetually trapped in
the buggy or malicious peripheral drivers. For the memory isolation
of modules, based on the basic isolation provided by WebAssembly,
ThingSpire OS further provides the memory sharing mechanism
with grants, which provides the fine-grained memory isolation.

3 PRELIMINARY EVALUATION
We implement an initial version of ThingSpire OS based on the
architecture presented in Figure 1 on ESP32 [2], a widely used
IoT node integrated with WiFi and Bluetooth connectivity. The
initial prototype is developed using C and C++. We also conduct
preliminary evaluations on the performance of inter-module com-
munication. We can see from the results in Figure 2 that compared
to existing OS (RIOT), ThingSpire OS achieves more efficient IMC
by leveraging zero-copy optimization.

4 CONCLUSION
This paper presents a novel IoT operating system targets on cloud-
edge integration named ThingSpire OS. ThingSpire OS employes
AoT WebAssembly runtime to improve the execution efficiency,
uses IMC Handler to manage the inter-module communication, and
leverages several security mechanism to ensure the safety of the
entire system.

REFERENCES
[1] Emmanuel Baccelli, Oliver Hahm, Mesut Günes, MatthiasWählisch, and Thomas C

Schmidt. 2013. RIOT OS: Towards an OS for the Internet of Things. In Proc. of
IEEE INFOCOM WKSHPS.

[2] ESPRESSIF. 2020. ESP32. Website. https://www.espressif.com/en/products/socs/
esp32.

[3] Wasm3 Labs. 2020. wasm3. Website. https://github.com/wasm3/wasm3.

https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://github.com/wasm3/wasm3

	Abstract
	1 Introduction
	2 Design of ThingSpire OS
	3 Preliminary Evaluation
	4 Conclusion
	References

