
TinyLink 2.0: Integrating Device, Cloud, and Client
Development for IoT Applications

Gaoyang Guan, Borui Li, Yi Gao, Yuxuan Zhang, Jiajun Bu, and Wei Dong∗
College of Computer Science, Zhejiang University, and

Alibaba-Zhejiang University Joint Institute of Frontier Technologies, China
{guangy,libr,gaoy,zhangyx}@emnets.org,{bjj,dongw}@zju.edu.cn

ABSTRACT
The recent years have witnessed the rapid growth of IoT (Internet
of Things) applications. A typical IoT application usually consists
of three essential parts: the device side, the cloud side, and
the client side. The development of a complete IoT application
is very difficult for non-expert developers because it involves
drastically different technologies and complex interactions between
different sides. Unlike traditional IoT development platforms
which use separate approaches for these three sides, we present
TinyLink 2.0, an integrated IoT development approach with a single
coherent language. It achieves high expressiveness for diverse
IoT applications by an enhanced IFTTT rule design and a virtual
sensor mechanism which helps developers express application
logic with machine learning. Moreover, TinyLink 2.0 optimizes
the IoT application performance by using both static and dynamic
optimizers, especially for resource-constrained IoT devices. We
implement TinyLink 2.0 and evaluate it with eight case studies, a
user study, and a detailed evaluation of the proposed programming
language as well as the performance optimizers. Results show that
TinyLink 2.0 can speed up IoT development significantly compared
with existing approaches from both industry and academia, while
still achieving high expressiveness.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Networks→ Cyber-physical networks.

KEYWORDS
Internet of Things, Integrated development

ACM Reference Format:
Gaoyang Guan, Borui Li, Yi Gao, Yuxuan Zhang, Jiajun Bu, and Wei Dong∗.
2020. TinyLink 2.0: Integrating Device, Cloud, and Client Development for
IoT Applications. In The 26th Annual International Conference on Mobile
Computing and Networking (MobiCom ’20), September 21–25, 2020, London,
United Kingdom. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3372224.3380890

* Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3380890

1 INTRODUCTION
The recent years have witnessed the rapid growth of IoT appli-
cations including environmental monitoring [1, 11, 16], shared
bicycles [10, 35], and smart homes [8, 29]. A typical IoT application
usually consists of three essential parts: (1) The device side: the
IoT device senses the physical environment and transmits data to
the gateway which can be aWiFi access point, cellular base stations,
etc. (2) The cloud side: the cloud which stores the data, manages
the IoT devices and provides other key functionalities like machine
learning. (3) The client side: the end device like a mobile phone
which interacts with end-users and provides functionalities like
displaying data and controlling devices.

Today, developing such applications is still very difficult because
developers need to deal with drastically different technologies
(e.g., embedded systems technology, cloud technology, and mobile
technology) and complex interactions between different sides. The
above difficulties have attracted great attention from both academia
and industry as it is widely accepted that “The IoT must be easy.
What is needed is IoT solutions for everyone, not just experts” [17].

Traditional IoT development uses a separate approach for device,
cloud, and client (e.g., mobile) development. For example, IoT
studio [6] provides a one-site IoT development platform consisting
of the device platform, service platform, and mobile platform.
Although it brings us great convenience as there is a unified
framework and many reusable components, the implementation
details of different sides are left to different developers.

Separate development faces several issues. First, it requires
the co-operation of different developers, e.g., embedded systems
developers, cloud developers, and mobile developers. The inter-
action and dependency among different developers slow down
the development speed which is critical to obtain first-mover
advantages and reduce development cost. Second, it is often tedious
and error-prone as extra models and interfaces must be explicitly
and clearly specified.

To address the above issues, we propose TinyLink 2.0, which
uses an integrated IoT development approach with a single coherent
language. TinyLink 2.0 mainly targets non-experts in the consumer-
oriented IoT domains such as education, maker and startup. Its
integrated programming model and other easy-to-use features
are user-friendly to students, makers, and small startups. Based
on TinyLink 2.0, they can rapidly build the prototype, test the
performance, validate their ideas, and get early feedbacks. Expert
developers can also benefit from the system because it accelerates
building the prototypes of IoT projects. Afterwards, they can
continue their advanced developmentwith the source code provided
by TinyLink 2.0.

https://doi.org/10.1145/3372224.3380890
https://doi.org/10.1145/3372224.3380890
https://doi.org/10.1145/3372224.3380890

MobiCom ’20, September 21–25, 2020, London, United Kingdom G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, W. Dong

TinyLink 2.0 builds on top of many existing works. For example,
it uses IFTTT-like rules [15, 33] to specify IoT application logic. It
builds on top of TinyLink [12] to generate the hardware config-
uration as well the actual binary program for the corresponding
hardware. The existing works shed light on many important aspects
towards the goal of simplifying the IoT development. However, we
are facing unique challenges. We highlight three challenges and
our solutions in the following:

Challenge 1: How to design a single coherent language for
developing a complete IoT application?

Solution 1: Based on our simple observation, IoT application
developers usually reason about data collection, device control, rule
configuration, and interaction (e.g., data flow and service call). Some
existing declarative languages [5, 21] are proposed for their specific
domains (e.g., data query) and can cover some aforementioned
aspects. Until recently, however, there lacks an integrated approach
for developing IoT applications on the three sides and it is extremely
difficult to merge these languages into one. TinyLink 2.0 provides
a domain-specific language (DSL) in a structured programming
style which can cover all the above aspects. Its application usually
consists of rule capsules called policies and code capsules called
TinyApps. Policies consist of IFTTT (IF-This-Then-That) rules and
interactions that are used to express the main IoT application
logic across TinyApps, while one TinyApp describes the behaviors
of an IoT device or a mobile client. TinyLink 2.0 compilers can
automatically compile the application code to software programs
at different sides, simplifying the process of separate programming
and separate compilation.

Challenge 2: How to express diverse IoT application logic (e.g.,
data collection, device control, multiple device interaction) in an
easy way?

Solution 2: There are mainly two drawbacks of using traditional
IFTTT rules to express application logic. First, limited keywords
(e.g., IF, THEN and ELSE) in traditional IFTTT rules make them only
be able to express simple application logic. Second, it is difficult and
time consuming to express application logic containing machine
learning using traditional IFTTT rules. In TinyLink 2.0, we first use
an enhanced IFTTT rule design to improve the expressiveness. More
keywords are added into TinyLink 2.0. It further includes a virtual
sensor mechanism to help developers rapidly express application
logic with machine learning.

Challenge 3: How to optimize the performance (e.g., energy
consumption) on resource-constrained IoT devices?

Solution 3: Traditional approaches usually focus on optimizing
the performance on each side. For example, a recent work RT-
IFTTT [15] uses a sensing data prediction technology to reduce the
energy consumption at the device side. TinyLink 2.0 further uses
a cloud-centric approach where the cloud effectively has overall
control. It optimizes the performance by a static optimizer and
a dynamic optimizer. At compile time, the former intelligently
determines where to put the application logic, either the device side
or the cloud side. At runtime, the latter analyzes the conditions in
IFTTT rules and dynamically requests sensor data with variable
intervals to reduce the energy consumption.

We implement TinyLink 2.0 and evaluate its performance
extensively. Results show that: (1) Its programming language can
express diverse IoT application logic. Concretely, within a set

1 TinyApp SmartLED{
2 Interface:
3 TL_Data LIGHT ,PIR; TL_Service bool TurnOnLED ();
4 Program:
5 void setup(){
6 TL_Connector.bind(TL_WiFi);
7 TL_WiFi.join("SSID","PASSWD");
8 LIGHT.bind(TL_Light); PIR.bind(TL_PIR);
9 }
10 bool TurnOnLED () {return TL_LED.turnOn ();}
11 }SL1 ,SL2 ,SL3;
12
13 TinyApp SmartDoor{
14 Interface: TL_Data GYRO;
15 Program:
16 ... // Configurations for GYRO sensor and the network
17 }SD;
18
19 Policy HomeOccupancy{
20 Interface: TL_Event EVT({"Home", "Out"});
21 Rule:
22 If(Any({SL1 ,SL2 ,SL3}.PIR.last("5min").avg() >0)){
23 EVT.trigger("Home");
24 } Else { EVT.trigger("Out");
25 } Within (30, 0);
26 }HO;
27
28 Policy DoorEvent{
29 Interface: TL_Event EVT({"Opening", "Closing"});
30 Rule: ... // Infer events from the Gyro data of SD
31 }DE;
32
33 Policy LightControl{
34 Rule:
35 If(DE.EVT.isTriggered("Opening") && Any({SL1 ,SL2 ,SL3

}.LIGHT.last() <100) && TL_Time.hour >=17){
36 For(L In {SL1 ,SL2 ,SL3}) {L.TurnOnLED ();}
37 }Within (10, 0.05);
38 }LC;
39
40 TinyApp ControlPanel@Client{
41 Program:
42 UI_Button B1; UI_Text T1;
43 void setup(){
44 B1.setText("Turn on LEDs");
45 T1.bind(HO.EVT.last()); TL_UI.append ({B1,T1});
46 }
47 void B1.isPressed (){
48 For(L In {SL1 ,SL2 ,SL3}) {L.TurnOnLED ();}}
49 }CP;

Figure 1: Code snippets of the smart home application.

of about 100 real-world IoT projects, it can implement about
85% of them; (2) It can reduce more than 85.28% of the lines of
code compared with the best existing approaches; (3) It can use
virtual sensors to automatically draw inferences from sensing data
on various deployment circumstances. (4) Its dynamic optimizer
searches a larger optimization space and can generate more energy-
efficient solutions than the state-of-art approach RT-IFTTT [15];
(5) It incurs acceptable overhead in terms of program space and
memory space.

We summarize the contributions as follows:

• We present TinyLink 2.0, a novel system which integrates
device, cloud, and client side development of IoT applications.
Its programming language enables developers to express
diverse IoT application logic in an easy-to-use way.
• We propose an optimization approach combining compile time
code partitioning and runtime task scheduling to minimize the
energy consumption of IoT devices.
• We implement TinyLink 2.0 and extensively evaluate its
performance. Results show that it can significantly speed up
the IoT development while still achieving high expressiveness.

The rest of the paper is organized as follows. Section 2
introduces TinyLink 2.0 through a use case study. Section 3
presents its overview. Section 4 and Section 5 describe the design

TinyLink 2.0: Integrating Device, Cloud, and Client Development for IoT Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

TinyAppTinyApp

①Write the App Code

App Code

③ Assemble and deploy the

assembled IoT devices

TinyApp
Output

 　　

④ Install the application at

 TinyLinkClient

② Upload the code and

download the output

TinyApp Policy

Hardware

Config.

Software

Program

SL1
SL2

SL3

SD

Figure 2: Usage workflow of TinyLink 2.0: 1) write
the application code; 2) upload the code; 3) assemble
and deploy devices; 4) install the application.

IoT

Devices

TinyLink
Code

Policy

TinyApp

TinyApp

@Client

RESTful

APIs

Preprocessor

Policy Config.

HW Config. &

SW Program

Client

Program

Policy
Interpreter

Device
Generator

Client
Generator

Static
Optimizer

IoT

Devices

Client

Devices

Cloud

Rule

Engine

ML

Layer

Figure 3: System overview of TinyLink 2.0. It generates energy efficient
programs for the three sides at compile time. At runtime, it further
optimizes the application performance.

and implementation details. Section 6 evaluates the performance
extensively. Section 7 discusses some important issues and Section 8
presents the related work. Finally, Section 9 concludes the paper.

2 TINYLINK 2.0 USAGE
In this section, we develop a smart home application to show the
usage of TinyLink 2.0.With this application, users can observe home
occupancy of the house, remotely turn on/off LEDs via smartphones
and even allow TinyLink 2.0 to automatically turn on all LEDs when
users open the home door at dusk. Figure 1 shows the code snippets
of this application, including the device side, the cloud side, and the
client (e.g., mobile) side. Figure 2 shows the development process
which contains the following four steps:

1○Write the application code. With TinyLink 2.0 program-
ming language, developers only need to describe key functionalities
of IoT devices and clients in TinyApps, and the high-level application
logic in policies without dealing with complex hardware drivers and
data flows. Lines 1-11 show a TinyApp named SmartLED that has
three instances, SL1, SL2, and SL3. Each one is used to generate an
IoT device. Lines 2-3 describe the output data, events and services
provided in the Interface. Lines 6-7 configure the WiFi network.
Line 8 binds the data in the interface to IoT device functionalities
(e.g., Light). Line 10 implements the service for turning on its LED.
Lines 13-17 show a similar TinyApp, SmartDoor, which provides
gyro sensor data. Lines 19-26 form a policy which detects home
occupancy by analyzing the average PIR (Passive InfraRed) sensor
value of the last five minutes from SmartDoor. Lines 33-38 show
the policy that can automatically turn on all LEDs by using others’
inferences and data. Lines 40-49 describe the TinyApp running at
the client (i.e., mobile) side.

2○Upload the code and obtain the output software pro-
grams. For each TinyApp instance on the device side, e.g.,
SmartLED, TinyLink 2.0 generates a hardware configuration,
including a hardware component list and a connection figure, as
well as the compiled software program for the hardware device.
Similarly, TinyLink 2.0 also generates software programs for client
sides. The cloud side programs include the main application logic,
which can be generated from policies.

3○Assemble and deploy the assembled IoT devices. Devel-
opers can assemble IoT devices by using the hardware configuration
and burn the software program to the devices. Then the IoT devices
can be deployed in desired places.

4○Install the application at TinyLinkClient. Finally, devel-
opers install the application for the client side at TinyLinkClient,

which is a container APP to host multiple IoT applications.
Developers can observe visualizations of their application data
and share them with others.

Unlike traditional developing approaches, developers need not
explicitly specify the data flows and service calls. Moreover, they
need not implement underlying details about when and how to
retrieve data so that they can focus on the main application logic.

3 TINYLINK 2.0 OVERVIEW
We describe the design goals of TinyLink 2.0 and the methods we
have adopted.
• Rapid development. TinyLink 2.0 intends to provide a simple
and easy-to-use approach for non-experts to rapidly develop
IoT applications.
• Energy efficiency. As the main application logic is expressed
in policies running on the cloud, TinyLink 2.0 should control
IoT devices’ behaviors (e.g., sensing and uploading) in an
efficient manner.
• Reconfigurability. Based on the abstractions like TinyApp
models, developers can replace deployed IoT devices with new
ones whose abstractions are the same at runtime, even those
that are developed by other IoT development systems. It is the
same case for policies.

Figure 3 shows the system overview of TinyLink 2.0. At compile
time, it analyzes the application code and generates the programs
for the three sides. The static optimizer will optimize the application
performance, which will be described in the implementation section
in detail. At runtime, TinyLink 2.0 will exploit the cross-side
optimization potential to further improve the energy efficiency
performance of the IoT application.

4 SYSTEM DESIGN
In this section, we will first present the design of the programming
language and highlight the features which enable integrated
development. Then we will describe how TinyLink 2.0 generates
IoT devices’ behaviors from policies in an energy-efficient manner,
including details about the problem formulation and its solution.

4.1 Programming Language
TinyLink 2.0 uses a structured DSL language for IoT application
programming, including the device side, the cloud side, and the
client side. It provides developers with a TinyApp model which is
the key to enable implicitly specified interactions (e.g., data flows

MobiCom ’20, September 21–25, 2020, London, United Kingdom G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, W. Dong

and service calls) across different sides and allows the cloud to
define device behaviors. We present the important features in the
following.

TinyApp model. It defines an IoT device’s capabilities and
behaviors. To be more specific, it abstracts an IoT device’s sensing
data, detected events and available service calls which are exposed
to other TinyApps and policies. For example, LIGHT, PIR, and
TurnOnLED in the TinyApp SmartLED of Figure 1 are exposed. On
the other hand, how to sample sensor data and implement service
calls in the Program are hidden from developers. They can quickly
realize what a TinyApp provides and write interactions between it
and others (i.e., TinyApps and policies).

Implicit interaction. In order to achieve rapid development,
we analyzed 101 commonly-used IoT projects published in popular
IoT communities such as [3, 4, 7]. We find that large amounts of
engineering efforts (e.g., about 45% of lines of code) are spent on
the interactions (or their preparations) such as formatting data,
transmitting over HTTPS or MQTT [30], and calling services from
mobile phones to IoT devices, etc. To alleviate this, TinyLink 2.0
adopts a structured way to implicitly specify the interactions with
the help of TinyApp models. It allows developers to retrieve other
devices’ data defined in Interface like retrieving member data of
a C++ class on a local device, as shown in line 22 of Figure 1. It is
a similar case for invoking service calls. TinyLink 2.0 implements
the detailed code for interactions during compilation. Moreover,
by keeping track of each IoT device status, it can maintain the
consistency of data flows and service calls. For example, if a service
call is invoked when an IoT device is offline, TinyLink 2.0 will
retransmit it once the device is back online.

Cloud-centric device behavior. One important feature of
TinyLink 2.0 is that it shifts the main application logic from IoT
devices to policies running on the cloud and allows the cloud to take
full control of device behaviors at runtime. Our major challenge is
how to abstract the logic among multiple IoT devices and express
them in terms of policies in an easy way. Existing approaches
use IFTTT programming [33, 34] to express the application logic,
which is simple and effective. Up to 2015, [34] had attracted
106,452 authors who created 224,590 IFTTT programs that had been
added by 11,718,336 end-users and the numbers were increasing
dramatically.

However, two issues arise when we directly adopt IFTTT
programming in TinyLink 2.0: (1) its limited keywords make
writing the logic across multiple TinyApps tedious and error-
prone; (2) it only contains high-abstracted application logic without
the management of IoT devices’ behaviors. For the first issue,
TinyLink 2.0 enhances IFTTT capabilities by adding new keywords,
e.g., All and Any to simplify writing rules among a set of TinyApp
instances with the same interface, For and In to traverse the set
of TinyApp instances. For example, line 22 of Figure 1 should be
written as follows.

If(SL1.PIR.last("5min").avg() >0 || SL2.PIR.last("5min")
.avg() >0 || SL3.PIR.last("5min").avg() >0){

For the second issue, TinyLink 2.0 can automatically generate
behaviors, in terms of task schedules that instruct IoT devices
to do specific tasks at the proper time, for each IoT device from
the implications in policies. Tasks schedules can be generated

Table 1: Keywords of TinyLink 2.0.
Keywords Description

TinyApp A complete piece of code run on IoT devices and client devices.

Policy It describes the application logic among TinyApps.

Interface It describes the public interfaces for inner data, events and services.

Program It contains the main program, including services and configurations.

Rule It describes detailed rules of the policy via extended IFTTT syntax.

Model It describes the configuration of virtual sensors.

If, Else IFTTT keywords for conditional executions in rules.

All, Any IFTTT keywords for expressing logic on a set of elements.

For, In IFTTT keywords which executes a for loop over a set.

Within IFTTT keywords for specifying deadlines and miss ratios of rules.

Require It specifies user requirements such as enabling debugging.

Import It imports the source code of other TinyApps and policies.

from IFTTT-like rules with the keyword Within which specifies
the deadline and the miss ratio [15]. The details are described in
Section 4.2.

Virtual sensor. Another important issue to impact the devel-
opment speed is the inference model design for sensing data, e.g.,
detecting the door events from gyro sensors. This is because: (1)
Non-experts usually do not know which sensors are critical to
making specific inferences and what the relationships are between
the inferences and the sensing data (e.g., gyro sensor detects 3-
axis data); (2) The deployment circumstances may be critical to
the inferences, which means it is difficult for non-experts to write
robust code against various deployment circumstances. Take the
policy DoorEvent in Figure 1 as an example. It uses the sensing
data of a gyro sensor which detects rotations around 3-axis. On a
swing door, turning upside down the gyro sensor in deployment
will lead to the opposite results since it reverses the sign of the
sensing data. If it is deployed on a sliding door, the inference could
not work at all due to no rotations.

To solve this problem, TinyLink 2.0 provides developers with
virtual sensors written in the Model. The code for the policy
DoorEvent in Figure 1 can be written as follows.

Policy DoorEvent {
Interface: TL_Event EVT({"Opening", "Closing"});
Model: TL_VirtualSensor vs;

vs.setOutput(EVT);vs.setInput ({SD.GRYO ,SD.ACC ,SD.MAG});
}DE;

In the TinyApp SmartDoor, we write additional code to bind
functionalities TL_Accelerometer and TL_Magnetometer to data
SD.ACC and SD.MAG. Taking these code, TinyLink 2.0 enables
developers to draw door event inferences from the combination
of sensing data by automatically generating an inference model.
Virtual sensors need initialization to record samples and train
models by clicking the UI buttons on the client side. TinyLink 2.0
uses several widely-used classifiers, e.g., Support Vector Machine
(SVM), random forest, and K-Nearest Neighbors (KNN), to train
models and chooses the most accurate one to use. Developers can
also add their own features or models via TinyLink 2.0 APIs.

The benefits of using virtual sensors are: (1) Developers do not
need to write sophisticated code for inferring from sensing data; (2)
The influence of deployment circumstances has been trained into
the model. TinyLink 2.0 will give guidance on which sensors are
positive or negative to the inferences.

Summary. Table 1 summarizes the keywords of TinyLink 2.0.
With them, it can accomplish multiple task operations in order

TinyLink 2.0: Integrating Device, Cloud, and Client Development for IoT Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

Table 2: Comparison of task operations among TinyLink 2.0
and three state-of-the-art systems, RT-IFTTT, Beam, and
TinyLink.

Functionality
TinyLink

2.0

RT-IFTTT

[15]

Beam

[29]

TinyLink

[12]

Poll sensor data ✔ ✔ ✔

Push sensor data ✔ ✔ ✔

Poll stream sensor data ✔ ✔

Push stream sensor data ✔ ✔ ✔

Actuator control ✔ ✔ ✔ ✔

Data storage ✔ ✔ ✔ ✔

Trigger events from sensor

data
✔ ✔

✔

Inference from sensor data ✔ ✔ ✔

Dynamically alter

polling/pushing intervals
✔ ✔

Multi-device interaction ✔ ✔

Data visualization ✔

Virtual sensor ✔

to express diverse IoT application logic. The currently supported
task operations are shown in Table 2. We compare TinyLink 2.0’s
supported task operations with other three state-of-the-art IoT
frameworks, RT-IFTTT [15], Beam [29] and TinyLink [12]. Com-
pared with RT-IFTTT, TinyLink 2.0 enables more task operations,
e.g., multiple sensor data retrieving methods (e.g., pushing sensor
data), triggering events and drawing inferences from sensor data,
as well as visualizing the data. Compared with Beam and TinyLink,
TinyLink 2.0 supports multi-device interactions, virtual sensors,
dynamically altering polling/pushing intervals and visualizing
sensor data.

4.2 Performance Optimization
We describe how the dynamic optimizer generates tasks for
instructing IoT devices at the proper time and how it optimizes
the task schedules as mentioned in Section 4.1. When the policies
are written in IFTTT-like rules (i.e., condition-action pairs),
TinyLink 2.0 only needs to find the proper time for acquiring
conditions because the actions are invoked only if the conditions are
true. A naive method is to poll the sensor data with fixed intervals,
which could be a waste of energy since the conditions may be false
for a long time. A recent state-of-the-art approach, RT-IFTTT [15],
proposes a real-time solution to dynamically calculate efficient
condition-aware polling intervals for each sensor. However, RT-
IFTTT has two key drawbacks. First, it assumes that a device can
only upload the sensing result from a single sensor at a time. This
assumption makes the optimization problem easier to solve, but
fails to achieve better solutions where multiple sensing results
are uploaded in a single uploading message. Thus, it couples
the sensing and uploading, i.e., one sensor reading requires one
data polling. Moreover, TinyLink 2.0 provides more available task
operations for transmissions and have full control of them, e.g.,
pushing/polling and streamed pushing/polling while RT-IFTTT
only supports polling as shown in Table 2.

For example, a Mosaic [11] IoT device monitors urban air quality
by sampling and uploading temperature, humidity, and PM2.5 data
periodically. Suppose at one moment the maximal polling intervals
are 15s , 21s and 32s , respectively. Figure 4 shows the timeline when
the device uses maximal polling intervals. The power consumption

0

5.5

11

0 20 40 60 80 100

RT-IFTTT

TinyLink
2.0

Time (s)

Upload Temperature Humidity PM2.5

Figure 4: Timeline of uploading sensor data by using RT-
IFTTT and TinyLink 2.0.

is about 17.61mW . Intuitively, we can reduce transmission times by
decreasing humidity and PM2.5 intervals to 15s and 30s , respectively.
We observe the power consumption drops to 9.07mW , reducing
about 48.5%. The actual problem of choosing these intervals is much
more complex due to the heterogeneity of IoT sensors and radios,
and the dynamics of maximal intervals.

Problem Formulation. We present the notations for the
sensing/transmitting schedule generation problem formulation.

• D = {d1,d2, ...,dM } is the set of M IoT devices. IoT device di
includes Ni sensors. Si = {si1, si2, ..., siNi } is the set of sensors
on IoT device di .
• T s

i = {t
s
i1, t

s
i2, ..., t

s
iNi
} is the set of current sampling intervals

for the set of sensors {si1, si2, ..., siNi }. Since we can combine
the data transmissions of different sensors when they sample
at the same moment, we use tdi to represent the average
transmission interval of di .
• Esi = {e

s
i1, e

s
i2, ..., e

s
iNi
} is the set of energy consumption of

each sensor data sampling on IoT device di .
• edi denotes the energy consumption of transmitting a message
from di . In IoT scenario, a data transmission usually involves
radio powering on/off and connecting to the gateway/server,
the number of transmissions has much more significant impact
on the energy consumption, compared with the message
length. Therefore, for simplicity, we assume that the energy
consumption of transmitting a message only depends on di .

With the above notations, we can formulate the schedule
generation problem as the following optimization problem with the
criterion being the power consumption of the sensor data sampling
and uploading operations.

Find the values of all {T s
1 ,T

s
2 , ...,T

s
M }

min
M∑
i=1
(

Ni∑
j=1

esi j/t
s
i j + e

d
i /t

d
i)

s.t.

{
1 ≤ tsi j ≤ tmax

i j , ∀si j ∈ Si

tdi = DTI (T s
i), ∀di ∈ D

(1)

Note that the resolution (i.e., minimal time unit) of all intervals is
set to 1 second in our formulation for simplicity. The first constraint
means that the used sampling interval tsi j should be smaller than
the maximal sampling interval tmax

i j which mainly depends on the
sensor data updating requirement of the application. The second
constraint calculates the average transmission interval tdi for IoT
device di , given its sensor sampling intervalsT s

i , i.e., DTI () (device
transmission interval). Considering that multiple sensor samples
may be combined into one message and be transmitted at the same
time, theDTI calculation is a non-trivial task. We solve this problem

MobiCom ’20, September 21–25, 2020, London, United Kingdom G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, W. Dong

Algorithm 1: Heuristic algorithm for calculating sampling
intervals.
Input: All of the maximal sensor sampling intervals

{T max
1 ,T max

2 , ...,T max
M
}, all of sensor energy

consumptions {E s1 , E
s
2 , ..., E

s
M
} and all of the device

transmission energy consumptions {ed1 , e
d
2 , ..., e

d
M }

Output: {T s
1 ,T s

2 , ...,T s
M
}

1 Function DEC(T s
i , E si , e

d
i) // Calculate the device power

consumptions of data transmitting and sensor sampling
2 return

∑Ni
j=1 e

s
i j /t

s
i j + e

d
i / DTI(T

s
i);

3 T S ← ∅;
4 for i := 1 to M step 1 do
5 T min

i ← T max
i ;

6 for k := 1 to min(T max
i) step 1 do

7 T ′
i ← ∅;

8 forall t si j ∈ T
max
i do

9 T ′
i ← ⌊t

s
i j /k ⌋ · k ∪T

′
i ;

10 if DEC(T min
i , E si , e

d
i) >DEC(T

′
i , E

s
i , e

d
i) then

11 T min
i ← T ′

i ;

12 T S ← T S ∪T min
i ;

13 return T S ;

by using the Venn diagram formula [27], and omit the details due
to the page limit.

Thenwe focus on the optimization problem. Since the calculation
of DTI () is non-linear, the optimization problem is a non-linear
integer programming (NIP) problem, which is NP-hard [14]. To find
the near-optimal solutions, we propose a heuristic algorithm as
shown in Algorithm 1. For each device, the algorithm first finds
the smallest sampling interval of all maximum sensor sampling
intervals, i.e., min(T s

i). For example, in Figure 4, the smallest
interval is 15 for the interval set {15, 21, 32}. Then it traverses
all sampling intervals ranging from 1 to min(T s

i) (e.g., [1, 15]) as
the candidate of the transmitting interval of that device. For each
candidate, the algorithm calculates the largest sampling interval
for each sensor where the sampling interval is divisible by the
candidate interval. In this example, when the candidate interval is
15, the largest sampling interval for the third sensor is 30. Given the
largest sampling intervals for all sensors, the algorithm search for
the set of intervals with the minimal sampling/transmitting power
consumption for each device. The time complexity of this heuristic
algorithm is O(

∑M
i=1min(T s

i) · Ni). When the smallest sampling
interval and the number of sensors are bounded values, the time
consumption of this algorithm is almost linear toM , i.e., the number
of devices, making it scalable to applications with a large number of
devices. In the evaluation section, we will show that this relatively
simple heuristic algorithm can achieve satisfactory performance
under various settings.

5 SYSTEM IMPLEMENTATION
In this section, we present details about how a piece of application
code is compiled into programs of the three sides. Due to the page
limit, we omit the detailed description of several components, e.g.,
preprocessor, and focus on the key components of TinyLink 2.0.

Device side. As discussed in Section 4.1, TinyLink 2.0 generates
task schedules for heterogeneous IoT devices. A possible approach
is to use virtual machines (VMs) to run arbitrary program
code [26]. Clearly, the VM approach is flexible, but it suffers from
drastic slowdown compared to native code, especially on resource-
constrained IoT devices. Also, to the best of our knowledge, there
is no unified VMs for heterogeneous IoT devices, which needs
great engineering efforts. Therefore, TinyLink 2.0 uses another
approach in which IoT devices execute pre-defined functions in
native code. On the device side, a task handler containing specific
state machines is implemented to execute instructions contained
in messages from the cloud. For each data and service calls in the
interface, TinyLink 2.0 binds an execution state and a corresponding
pre-defined function to it.

Moreover, TinyLink 2.0 builds on top of a device generation
system, TinyLink [12], which can generate IoT applications from
hardware-independent C-like code. The language for the TinyApp
part is an embedded domain-specific language (eDSL) [9] of
TinyLink language that: (1) it adds DSL elements such as macros
and data types (e.g., Service); (2) it implements numerous task
handlers to facilitate interactions and behavior managements of
IoT devices; (3) its high-level API wraps TinyLink’s APIs by hiding
unimportant procedures, e.g., uploading data via WiFi in Figure 1;
(4) it enriches TinyLink’s functionalities, e.g., support of LoRa and
concurrent execution.

TinyLink 2.0’s device generator builds abstract syntax trees of
the application code by using parser generator ANTLR [24]. Then
it translates TinyLink 2.0 code into TinyLink code via its simple
finite-state machine written in Python. The translated code will be
processed by TinyLink to generate hardware configurations and
binary programs. Moreover, to enable concurrent execution on low-
end IoT devices [13] (e.g., Arduino Mega) which use single-threaded
programming, TinyLink 2.0 incorporates protothreads [28] to create
stackless lightweight threads for concurrent executions.

Client side. TinyLink 2.0 generates client programs from client
side code (e.g., TinyApp with the postfix @Client). For simplicity,
TinyLink 2.0 uses web pages as the client side program, e.g.,
WebViews on Android phones. It first builds the abstract syntax
tree of the client code and then translates the interactions to
JavaScript (JS) code, e.g., sensor data retrieval into RESTful API
request by using $.post. Besides, it translates the UI widgets to
mixed elements by using HTML and JS with TinyLink 2.0’s default
template. Finally, the combinedWebView code is stored in the cloud
and can be accessed through the container app TinyLinkClient.

Besides, TinyLink 2.0 supports successive advanced development
by allowing hybrid development, i.e., using its approach in
combination with other development tools. For example, developers
can: (1) build device side software based on systems other than
TinyLink, e.g., using Microsoft Azure IoT to develop IoT devices; (2)
customize the client side program to allow more sophisticated UI
interfaces, e.g., uploading their own WebView templates which
include customized style sheets and JS code. The preprocessor
automatically transforms data flows and service calls in Interface
into RESTful APIs (e.g., MQTT topics and HTTPS links). Developers
can customize their own device and client programs by using other
tools as long as they use the allocated RESTful APIs.

TinyLink 2.0: Integrating Device, Cloud, and Client Development for IoT Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

Static optimizer by code partitioning. By analyzing policies,
TinyLink 2.0 aims to further improve the efficiency of the
application by using domain knowledge. This is based on the insight
that some policies may hamper the performances of TinyApps if
they are processed in the cloud. Instead, they should be shifted to
the device and compiled as part of the device side program. For
example, policy DoorEvent in Figure 1 requires the gyro sensor
to continuously transmit its data with an interval of 50ms . The
interval is smaller than the estimated transmission time via WiFi
(e.g., 74ms on average [18]), which may cause missing deadlines.
Therefore, static optimizer shifts the rule to the TinyApp SmartDoor
at compile time as shown in the following code snippets.

Policy HomeOccupancy{ | TinyApp SmartDoor{
Rule: | Program:
If(SD.GYRO.last("z") <-20){ | void loop() {

EVT.trigger("Opening"); | TL_Gyro.read();
}Within (0.05, 0); | if(TL_Gyro.data("z") <-20)
If(SD.GYRO.last("z") >20){ | EVT.trigger("Opening");

EVT.trigger("Closing"); | if(TL_Gyro.data("z") >20)
}Within (0.05, 0); | EVT.trigger("Closing");

| TL_Time.delayMillis (50);}

To achieve this, the static optimizer of TinyLink 2.0 first extracts
a tuple <TinyApp instance, conditions, deadline> for each rule in
policies. Then it searches the TinyLink 2.0 database for average
transmission time of the network which is set to values reported
in articles like [18]. If the deadline is smaller than the average
transmission time, it will: (1) shift the rule in policies to IoT device
program code if the condition and the action contain interactions
from only one TinyApp instance; otherwise (2) throw warnings
about the potential of missing deadlines. For the former, it uses a
translator similar to device generator and adds the translated device
code snippets to the main loop.

Cloud side: 1○policy interpreter. Policies run in the cloud and
they are the key to the application logic. There are roughly two
methods to execute policies, compiled as binaries and executed,
or translated as scripts and interpreted at runtime. Considering
the requirements of scalability and user modifiability at runtime,
TinyLink 2.0 adopts the latter. Policies are translated into rule
configurations in JSON format. The rule conditions are analyzed
and interpreted to postfix expressions together with RESTful APIs,
so do the service calls in rule actions.

Cloud side: 2○rule engine. The rule engine runs at the cloud,
which is same as the dynamic optimizer. It can process a large
number of rule configurations and registered triggers for each
rule. There are two kinds of triggers, event-based triggers (e.g.,
the arrival of sensor data and events) and time-based triggers
(e.g., If(TL_Time.hour >= 17)). Rule engine uses three threads,
each with one simple FIFO message queue implemented by
Redis, including: (1) the message queue which stores uploaded
sensing data and events to the MySQL database and searches for
new triggers, (2) the rule queue which judges conditions of the
triggers, (3) and the command queue which sends commands in
the rule action. We modify the source files of the MQTT server,
mosquitto [20] to push the involved rules into the rule queue when
a message arrives. For judging each condition, the thread with the
rule queue uses the latest sensor data which are still valid in the
time window (the default is 60 seconds).

Cloud side: 3○Machine learning layer. Machine learning
layer (MLL) facilitates the main functionalities of virtual sensors.

0

0.2

0.4

0.6

0.8

1

Acc Gyro Mag A+G A+M G+M All

A
c

c
u

ra
c

y

Combination of sensing data

SVM Random Forest KNN

Figure 5: Accuracy of door event inferences using SVM,
random forest and KNN.

Table 3: List of hardware components, servers, PC and
mobile phones that are used in the evaluation.

Mainboard
Arduino UNO, Arduino Mega2560, LinkIt One, Raspberry Pi 3 Model

B+, and BeagleBone Black

Shield
Base Shield V2, Grove Mega Shield V1.2, WiFi Shield V2, SD Card

Shield V4, and Grove Pi+

Peripheral

ESP8266 WiFi module, Grove UART WiFi, Grove IMU 9DoF sensor,

Grove ultrasonic ranger sensor, Grove PIR sensor, Grove light sensor,

Grove digital light sensor, Grove temperature and humidity sensor

(DHT11), Soil temperature sensor (DS18B20), Grove soil moisture

analog sensor, PPD42NS dust sensor, Grove Chainable RGB LED,

LED bulb, motor, relay, etc.

Cloud Server
Intel(R) Xeon(R) Platinum 8163 CPU@2.50GHz, 2GB memory, and

a 40GB HDD disk

Desktop PC Intel Core i7-7700 CPU@3.60GHz, 8GB memory, and 1TB HDD disk

Smartphone iPhone 7 and Huawei Honor 8

There are four phases for drawing inferences by using virtual
sensors: (1) MLL loads the inputs and outputs of virtual sensors from
rule configurations. MLL generates task schedules that sample data
for initialization, and registers them on the rule engine. (2) After
deploying the IoT devices that provide the sensing data, developers
can use the client side program to record the training data, including
the raw sensing data and the virtual sensor outputs manually
labeled by the developers. (3) Then MLL extracts significant
statistical features from the data. MLL trains these data frames
using different classifiers including SVM, random forest, and KNN.
(4) Finally, MML chooses the trained model with the best accuracy
during cross-validation and deploys it on the cloud. MLL also
registers triggers of the input sensing data in the rule engine, and
waits for classification requests from it. We implement the MLL
using Python with scikit-learn library [25]. In addition, developers
can add their own features or alter the machine learning models by
downloading TinyLink 2.0’s template Python script, modifying it
with scikit-learn APIs, and uploading it to the system.

We revisit the example of the TinyApp SmartDoor and the policy
DoorEvent, and deploy the IoT device on a swing door where
the device’s x-axis is vertical to the door and z-axis is vertical
to the ground. Figure 5 shows the accuracy of the three classifiers
among different combinations of the accelerometer, the gyro, and
the magnetometer. We observe that SVM using all the sensors
can achieve the best accuracy. Note that ideally the virtual sensor
mechanism can be applied to infer any user-defined events from
arbitrary sensors, but the inference accuracy varies depending on
the correlation between the desired events and the raw sensor data.

6 EVALUATION
In this section, we evaluate TinyLink 2.0 from different perspectives.
We first briefly introduce the experiment setup. Then we describe
case studies and a user study in detail. Afterward, we evaluate

MobiCom ’20, September 21–25, 2020, London, United Kingdom G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, W. Dong

(a) Client Program (b) IoT Device

Figure 6: Smart seat application.
(a) Client Program (b) IoT Device

Figure 7: Smart door application.
(a) Client Program (b) IoT Device

Figure 8: Mosaic application.

Figure 9: IoT device
of FarmBot App.

Create

Project

Project

IoT Hub

Create

Product

Product

Manager

N/A

Create

Device

Device

Manager

Device

Manager

Create

Interface

Thing

Model

Message

Routing

Develop

With SDK
Compile Burn

Write

App Code

Upload

Code

Download

Output

Debug Publish

Burn
Create

Project
Debug Publish

Development process of

IoT Studio and Azure IoT

Development process of TinyLink 2.0

Choose Display Widget

Widget

PowerBI Widget

Set Data Source

Data Source
Message Routing Endpoint

Create

Cloud Container

Service Dev.

Function App

Set

Data Source

Data Source

Function Trigger

Write

Cloud Logic

Service Dev.

Function Code

Figure 10: Development processes of IoT Studio, Azure IoT and TinyLink 2.0.

the programming language and the performance of TinyLink 2.0.
Finally, we show the overhead of TinyLink 2.0.

6.1 Experiment Setup
In our experiments, we use four kinds of different mainboards,
five shields and several sensors and actuators to build IoT
platforms. Table 3 shows the detailed information of these hardware
components, as well as the configurations of cloud server, desktop
PC and smartphones used in the evaluation. We deploy the
TinyLink 2.0 system, which is encapsulated in multiple Dockers,
on the cloud server. In addition, we use a local desktop PC for
running trace-based simulations and random tests. By using two
Monsoon power monitors [31], we canmeasure fine-grained energy
consumptions of IoT devices.

6.2 Case Studies
We design and implement eight representative IoT applications with
TinyLink 2.0. We list their application features and descriptions in
Table 4. Figures 6, 7, and 8 show three representative applications
with their assembled IoT devices and client programs. Others are
omitted due to the space limit. The IoT devices and the policies
of all eight cases are developed purely by using TinyLink 2.0. As
mentioned in Section 5, it provides basic WebView templates for
customization which will then be compiled with TinyLink 2.0’s
RESTful APIs. The client programs in Figure 7 and 8 are customized
by modifying styles and using external maps.

In order to evaluate the cost of TinyLink 2.0’s integrated
development, we find an “expert implementation” from Arduino
Project Hub [22] and implement the application FarmBot. Figure 9
shows the IoT device implemented by using TinyLink 2.0, and
Table 4 shows the implementation information. We omit the figure
for the client program because it is very similar to Figure 6(b).
We can observe that TinyLink 2.0 achieves ease-of-use and
rapid development because it uses only 92 lines of code to
implement the application, while the expert one requires 328

lines of code for the device side, 10 fields of settings for the
cloud side, and 260 drag-and-drop logic blocks for the client side.
TinyLink 2.0’s application achieves almost the same functionalities
of the original version, including sampling environment data,
controlling actuators, and sending alerts to users. However, there
is one slight difference between the two implementations, i.e., the
original IoT implementationmay perform better than TinyLink 2.0’s
implementation in terms of network performance. This is because
the original one can tune the TCP/IP layer parameters by using
low-level APIs (i.e., AT commands [36]), while TinyLink 2.0 uses
the default parameters.

6.3 User Study
Methodology. To evaluate how TinyLink 2.0 achieves rapid
development, we conduct a user study using three IoT development
platforms, TinyLink 2.0 and two representative platforms, Microsoft
Azure IoT and IoT Studio [6]. The user study contains two parts.
In the first part, for each platform, we provide participants with
a step-by-step user manual to guide them to implement an IoT
application. It is a simplified version of the example in Figure 1
which includes a SmartLED TinyApp, a HomeOccupancy policy, and
a ControlPanel@Client client. They just need to follow the steps
and use the application code that we have provided. In the second
part, we guide the participants to complete the example in Figure 1
by themselves. We provide them with abundant resources like API
references and hardware components. Participants need to record
the timestamps of important steps according to instructions in the
user guide and leave feedbacks in the end. In addition, we capture
screen videos during the experiments for further analysis.

Figure 10 shows the overall development processes of the three
platforms. In Azure IoT, we use the IoT Hub and the Azure Python
SDK to implement IoT device code, use the Message Routing, the
Function App and the Function Trigger to implement its rule engine
and set up the dataflow, and use the PowerBI to visualize data. On
the other hand, we use the IoT Studio and the AliOS Things SDK

TinyLink 2.0: Integrating Device, Cloud, and Client Development for IoT Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

Table 4: Real-world applications implemented by TinyLink 2.0.

Application TinyApp Policy
Lines

of Code
IoT

Device
Description

Mosaic [11] - Air

Quality Monitoring
2 2 41 8

It monitors the air quality of a selected area by deploying IoT devices on mobile vehicles. Its client
displays the air quality data on the map and alerts people if the pollution exceeds a threshold.

Baby Care 2 4 103 2
It monitors the sleeping status of a baby by detecting sound, movements and ambient light. It can report
to parents if any abnormal events happen by sending text messages and making phone calls.

Intelligent Parking 2 5 90 4
It helps users to find a vacant lot in two example parking lots. Its policy infers lot occupancy status by
using an ultrasonic ranger sensor and a magneto-meter sensor. It displays current status of all lots.

Smart Hanger 2 4 124 1
It can intelligently notify users whether it is a good time to hang their clothes according to its weather
inferences inferred from fetched data of local weather reports and its sampled humidity data.

Smart Home 3 3 78 4 This case has been described in Section 2.

Smart Plant 2 12 197 1
It can detect ambient environment (e.g., soil humidity), infer accidents (e.g., falling and turning over) of
a flowerpot from an IMU 9DoF sensor and report the status to the client side program.

Smart Seat 2 6 156 8
It checks whether a seat is available in a room by using the PIR sensor and the ultrasonic ranger sensor,
visualizes the room seat status and notifies users if a new seat is available.

FarmBot 2 4 92 1
It monitors the environment (i.e., air/soil temperature/humidity, and light) of a farm, uploads the data,
and sends alerts to users. It also allows users to control the LED bulb from the smartphone.

0

50

100

150

200

TinyLink
2.0

TinyLink
2.0 Hybrid

IoT Studio Azure IoTD
e

v
e
lo

p
m

e
n

t
T

im
e

(m
in

)

IoT Platforms

Part 1 Part 2

Figure 11: Development time of applica-
tions under different IoT platforms.

86

62

15

39

0 50 100

TinyLink
2.0

TinyLink

Number of IoT Projects

Io
T

 S
y
s
te

m
s

Implementable Unimplementable

Figure 12: Implementation status of 101
IoT projects via different systems.

62
75

19
30 34

49

0

50

100

SD AC DS IS MI DV

#
 o

f
O

p
e

ra
ti

o
n

s

Task Operations

Figure 13: Breakdown of IoT project
implementations.

to develop IoT device code, use the Service Development to specify
service workflows which acts as a rule engine, and use the Web
Visualization Development to visualize data. Unlike TinyLink 2.0,
they both adopt separate development approaches and require clear
specifications of the underlying services and interactions.

Furthermore, we build another platform where participants can
customize TinyLink 2.0’s device side development. Participants first
write application code and leave Program part of the device side
application empty. Then they generate the three side applications
and retrieve the RESTful APIs of the device side. Afterwards, they
can customize device side application by using their own hardware
components, and development tools like Azure IoT instead of the
default ones provided by TinyLink 2.0.

Developers in the user study. We recruit twenty volunteers,
including six Ph.D. students, eight master students, and six
undergraduate students. Six of them are well-experienced in IoT
development, eleven of them have a little experience and three of
them has almost no experience. We randomly select five volunteers
for each platform. We collect the timestamps of important steps
and analyze the data.

Quantitative results. Figure 11 shows the results. We can ob-
serve that the development time on average by using TinyLink 2.0 is
about 52.2 minutes and 51.2 minutes for the two parts, respectively.
When using IoT Studio and Azure IoT, participants need about
1.84x and 2.32x of TinyLink 2.0’s development time on average,
respectively. This is because TinyLink 2.0’s integrated development,
including implicit interactions and automatic generation of device
behaviors, greatly reduces the development overhead. On the other
hand, when using TinyLink 2.0’s hybrid approach, participants
need about 1.40x of TinyLink 2.0’s development time on average.
However, compared to IoT Studio and Azure IoT, the hybrid
approach still increases development speed.

Feedbacks of Azure IoT. (1) Every participant complains about
the complex development process and too many configurations,
which are not user-friendly for non-experts; (2) Three of them
encounter difficulties when analyzing the event streams in the
Function App since they lack background knowledge of debugging
on .NET framework and spend much time on it; (3) Two of them
mention that the IDE contains too many undesired functionalities
which make the desired ones difficult to find.

Feedbacks of IoT Studio. (1) Four of them mention that the
drag-and-drop approach which specifies workflows in the Service
Development is easy-to-use and user-friendly, and reduces the
development overhead; (2) One of them thinks the drag-and-drop
approach is a little bit tedious in the second part of experiments
when she completes the first part and gets familiar with the system;
(3) One of them says that the debugging logs are clear and helpful.

Feedbacks of TinyLink 2.0. (1) All of them say that the
integrated development is very easy-to-use and user-friendly
because the underlying details are hidden and less code needs
to be implemented; (2) Two of them think that the application
logic is clear and of good readability; (3) One of them suggests that
providing more logs would be helpful.

Feedbacks of TinyLink 2.0 hybrid approach. (1) Three of
them mention that this approach does accelerate the development
process and it is great to give them more development choices;
(2) Two of them think that it may be faster if they directly use
TinyLink 2.0 without customization.

6.4 Programming Language
Expressiveness. We use the aforementioned 101 commonly-used
IoT projects published on popular IoT community for evaluation.
For each project, we try to implement it by using TinyLink 2.0
and mark it as implementable if the code can achieve the same
functionalities, otherwise as unimplementable. We also execute the

MobiCom ’20, September 21–25, 2020, London, United Kingdom G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, W. Dong

0

0.5

1

Acc Gyro Mag A+G A+M G+M All

P
e
rc

e
n

ta
g

e

Combination of sensing data

Accuracy Precision Recall

Figure 14: Inferences of swing door events when the IoT
device is rotated 45 degree on the z-axis and 45 degree on
the x-axis.

same procedure by using TinyLink [12]. Figure 12 shows the results.
We can observe that 62 IoT projects are implementable by both
TinyLink and TinyLink 2.0, while another 24 IoT projects are only
implementable by TinyLink 2.0 because TinyLink lacks interactions
with the cloud or the client. However, 15 IoT projects are still
unimplementable by TinyLink 2.0 because they require additional
hardware development. Nine of them require supplementing the
circuit (e.g., connecting resistors or capacitors to sensors), seven of
them require hand-built sensors or actuators (e.g., building specific
LED matrix from light-emitting diodes), and three of them require
both tasks. The last two require manufacturing PCB boards. These
IoT projects cannot be implemented since both TinyLink 2.0 and
TinyLink only use COTS hardware components.

In order to take an in-depth look, we break down the implemen-
tation of each project into TinyLink 2.0 operations in Table 2 and
summarize the result in Figure 13. We can observe that Actuator
Control (AC), Sensor Data acquisition (SD), and Data Visualization
(DV) are the three most required operations, while Data Storage
(DS), Inference from Sensor data (IS) and Multi-device Interaction
(MI) are less used. Other operations are not used in these IoT
projects. Therefore, TinyLink 2.0’s easy-to-use APIs and UI designs
can also satisfy developers’ demands easily.

Virtual Sensor. We intend to evaluate whether the virtual
sensor can draw correct inferences when the IoT device is deployed
by developers at liberty. We use the smart door application and
deploy IoT devices of TinyApp SmartDoor in three cases, 0-degree
rotation around z-axis (i.e., x-axis is vertical to the door and z-axis
is vertical to the ground), 45-degree rotation around the z-axis, as
well as 45-degree rotation around z-axis and 45-degree rotation
around x-axis, on a swing door. For each case, we gather thirty
samples of opening the door and thirty samples of closing the
door. Then for each classifier, we randomly select twenty samples
from the sixty samples for training and different twenty samples
for testing. In the first two cases, TinyLink 2.0 performs well
with an accuracy of 98.44% on average, while in the last case, the
overall accuracy degrades to 96.71%. Figure 14 shows the result of
the last case. We observe that the accuracy of the accelerometer
drops drastically to 53.53%. TinyLink 2.0 chooses the most accurate
classifier automatically, thus it uses KNN. In addition, it will notify
developers that the accelerometer may cause a negative impact on
the inference and should not be used.

Furthermore, we repeat the same experiment on a sliding door by
using the same setup. The gyro sensor causes a very negative impact
on the accuracy, while the magnetometer achieves an accuracy of
100%. Since there is no rotation when sliding, the gyro can only
detect noise. Thus TinyLink 2.0 gives guidance of not using the

Table 5: Lines of code for implementing applications.
Solution Case Device Cloud Client

TinyLink 2.0
Mosaic 12 18 11
Smart
Home 27 31 20

TinyLink and
RT-IFTTT

Mosaic 39 TinyLink 32 RT-IFTTT 137 Java
218 H5/JS

Smart
Home 95 TinyLink 36 RT-IFTTT 137 Java

262 H5/JS

Native Code
Mosaic 103 C/C++ 57 Python

261 C++
137 Java
218 H5/JS

Smart
Home 247 C/C++ 74 Python

305 C++
137 Java
262 H5/JS

gyro. The two experiments show that the virtual sensor can achieve
good applicability under different deployment circumstances.

Lines of Code.We compare the lines of code needed to imple-
ment the Mosaic application and the smart home application via
three methods, TinyLink 2.0, TinyLink with RT-IFTTT, and directly
using native APIs, respectively. Besides device functionalities,
these applications also include management of communication
and database on the cloud, as well as data visualization and
user interactions on the client. Table 5 shows the detailed result.
TinyLink 2.0 can reduce the lines of code by 85.28% to 94.72% for
the two examples, because it can automatically complete implicit
data flows and service calls, and generate device behaviors from
policies, which both need to be explicitly expressed by others.

6.5 Performance Optimization.
We evaluate the performance (i.e., energy consumption) of gen-
erated IoT device behaviors. First, we evaluate the one-time
scheduling performance of TinyLink 2.0’s heuristic algorithm by
using random data. Then we evaluate its long-term performance
by using both traces and real IoT devices.

We implement five baseline algorithms for comparison, the
original RT-IFTTT algorithm [15], an optimal algorithm, a random
walk algorithm, a random algorithm and a memetic algorithm [23].
The optimal algorithm uses a brute-force method that enumerates
all possible solutions to find the solution with the minimal energy
consumption. The randomwalk algorithm takes themaximal sensor
sampling intervals as its initial position and stops when the step
difference is smaller than 0.1s . The random algorithm just randomly
picks up a solution and repeats this for constant times (i.e., 10,000).
The memetic algorithm initializes a population of 10 chromosomes
and iterates selections 100 times where a local search is adopted.

Random data test. Considering an IoT device may possess
multiple sensors, we set the number of sensors to range from two
to ten, because ten sensors are enough to meet most IoT application
requirements. For each number of sensors, we generate 10,000
random test units. In each test unit, the maximal sensor sampling
intervals range from 1s to 3,600s , the energy consumptions of
sensors range from 1mJ to 1,000mJ and the energy consumptions
of data transmission range from 1mJ to 1,000mJ as well.

Figure 15 shows the percentage of reduced energy consumptions
on average of different algorithms compared with the RT-IFTTT
algorithm, and Figure 16 shows their execution time on average.
When there are two sensors, TinyLink 2.0’s heuristic algorithm
achieves the optimal solutions. As the sensor number increases
to seven, it can still achieve near-optimal solutions, i.e., about
99.2% on average of the optimal energy consumptions. Other three

TinyLink 2.0: Integrating Device, Cloud, and Client Development for IoT Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

0%

5%

10%

15%

20%

2 3 4 5 6 7 8 9 10

%
 o

f
R

e
d

u
c
e
d

 E
n

e
rg

y

C
o

n
s
u

m
p

ti
o

n

Number of sensors

Opt TinyLink 2.0 RandW Rand Memetic

Figure 15: Percentage of reduced energy
consumptions on average of different al-
gorithms compared with the RT-IFTTT.

0.244

0

100

200

300

400

2 3 4 5 6 7 8 9 10E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Number of sensors

Opt TinyLink 2.0 RandW Rand Memetic

Figure 16: Execution time on average
of different algorithms under different
number of sensors.

0%

20%

40%

60%

1 2 3 4 5 6 7 8 9

%
 o

f
R

e
d

u
c
e
d

 E
n

e
rg

y

C
o

n
s
u

m
p

ti
o

n

Number of the day
Opt TinyLink 2.0 Rand RandW Memetic

Figure 17: Reduced energy consump-
tions cumulated in a day of different al-
gorithms compared with the RT-IFTTT.

0%

50%

100%

150%

Opt TinyLink
2.0

Rand RandW Memetic

%
 o

f
 O

p
e
ra

ti
o

n

N
u

m
b

e
r

Sampling

Transmission

Figure 18: Percentage of operation num-
bers on average performed by different
algorithms in a day.

0%

50%

100%

150%

200%

RT-IFTTT Opt Memetic Rand RandW

%
 o

f
E

n
e
rg

y

C
o

n
s

u
m

p
ti

o
n

Figure 19: Percentage of energy con-
sumptions of different algorithms com-
pared with TinyLink 2.0.

0 1000 2000

SmartSeat

SmartLED

SmartDoor

Mosaic

Overhead (Bytes)

T
in

y
A

p
p

 I
o

T
 D

e
v
ic

e
s Memory

Program

Figure 20: Program space overhead and
memory space overhead.

Table 6: Energy consumption of operations.

Operation
Temp.

Read

Humid.

Read

Light

Read

Sound

Read

PM25

Read

Gyro

Read

MQTT

Pub&Sub

Energy (mJ) 1.13 1.12 0.02 0.03 6.25 0.03 139.23

baseline algorithm degrades quickly since the search space grows
exponentially and becomes too large for them. The random walk
algorithm does not perform well because energy consumptions be-
tween consecutive sensor intervals are usually discrete and change
drastically, which hampers the algorithm’s walking procedure.

Moreover, TinyLink 2.0’s algorithm uses much less execution
time than the other baselines algorithms. When the sensor number
is five, it uses 8ms on average to execute TinyLink 2.0’s algorithm,
while the memetic algorithm, the random algorithm, and the
random walk algorithm use 4,657ms , 8,198ms , and 8,516ms on
average, respectively. When the sensor number is ten, it uses 244ms
on average, which is still very small, while the others use more
than hundreds of seconds on average. The time consumption of the
optimal approach grows drastically as the sensor number increases.
It takes more than one day when the number exceeds six.

Trace-based simulation. We intend to evaluate whether the
one-time scheduling of the algorithms can perform well in the long
term. We choose the Mosaic application as our test case. First, we
measure the energy consumptions of its operations and Table 6
shows the results. The MQTT operation contains powering on
and off the radio, connecting and disconnecting the MQTT broker,
publishing amessage of 100 Bytes, subscribing a topic and yielding a
message of 100 Bytes. Then we assemble three IoT devices instanced
from the Mosaic TinyApp. Each IoT device samples temperature,
humidity, and PM2.5 data per second and stores the data along
with the timestamps in an SD card. We deploy them in different
places around our lab and retrieve three pieces of nine-day-long
sensor data traces. Afterward, we write a simulator in Python that
takes the traces and the measured energy consumptions as input. It
outputs the number of operations, including sampling operations
and data transmission operations by using different algorithms.

Figure 17 shows the reduced energy consumptions cumulated
in a day of different algorithms compared with the RT-IFTTT
algorithm. We can observe that TinyLink 2.0’s algorithm can
achieve the optimal cumulated energy consumptions in each day.
This matches the observation from the random test. We can also
observe that under various situations of different days in the long
term, TinyLink 2.0’s algorithm can also perform well. Figure 18
shows the percentage of operation numbers on average performed
by different algorithms in a day. We can find that TinyLink 2.0’s
algorithm introduces more sensor sampling operations while
reducing data transmission operations.

Real device test. We conduct the experiments on real IoT
devices of the Mosaic application. We measure the energy con-
sumptions of two IoT devices that use task schedules from
TinyLink 2.0’s algorithm and one of the baseline algorithms,
respectively, by using two power monitors. We do five rounds
of measurements and each lasts for two days. Figure 19 shows the
cumulated energy consumptions of different algorithms compared
with TinyLink 2.0’s algorithm. We can observe that it achieves
near-optimal performance on real IoT devices in the long term.
It can reduce about 41.06% on average of the cumulated energy
consumptions of the RT-IFTTT algorithm.

6.6 Overhead
We evaluate the overhead of TinyLink 2.0 from two aspects, the
program space overhead and the memory space overhead on
TinyApps. Since the Arduino Mega2560 uses an AVR MCU, we
can calculate the program space by the sum of .text and .data
segments. The measured memory space overhead is composed of
the overhead from static memory overhead (i.e., .text, .data, etc.)
and run-time memory overhead (i.e., stack and heap). Figure 20
shows the results. We can observe that the program space overhead
on average is 1.816 KB, which is negligible compared with 256 KB of
Flash. On the other hand, the memory space overhead on average is
around 0.272 KB, which is acceptable compared with 8 KB of RAM.

MobiCom ’20, September 21–25, 2020, London, United Kingdom G. Guan, B. Li, Y. Gao, Y. Zhang, J. Bu, W. Dong

7 DISCUSSION
Trade-off between simplicity and flexibility. To support rapid
development, TinyLink 2.0 tradeoffs flexibility for simplicity
to some extent. For example, the current implementation of
TinyLink 2.0 does not support fine-grained concurrency control
over the IoT device, e.g., the virtual sensor abstractions. In some
critical applications where the developers want explicit control on
program behavior, they can upload their own inference models
instead of using TinyLink 2.0’s predefined ones.

System scalability. TinyLink 2.0 targets for rapid development
without introducing much overhead to the cloud side which is the
key for system scalability. It indeed has overheads in cooperating
between the cloud and device sides. In Section 4, we havementioned
that the time complexity of our heuristic algorithm is almost linear
to the number of IoT devices, indicating that our system does not
sacrifice much performance in terms of scalability.

Debugging problem. Developers can use detailed built-in logs
for all TinyLink 2.0 APIs, and also can specify their own debugging
information. Further, when developers find problems which are
hard to debug at the API level, they can obtain the source code
for detailed debugging (e.g., interactive debugging with GDB).
Nevertheless, debugging an IoT application with interactions of
three sides remains a very challenge problem.

Edge computing. The current implementation does not con-
sider the computation capability of the edge server. It may cause
problems when the connectivity to the cloud is intermittent or the
delay is excessively long. In principle, TinyLink 2.0 can support
edge computing by properly placing the rule execution on the edge
server. We would like to investigate this direction in future work.

8 RELATEDWORK
Rapid Development. TinyLink [12] is the state-of-the-art system
for rapid development of IoT applications, which adopts a top-
down approach that a developer can first write the application
code and obtain the hardware configuration for device assembling
and the software program. Both TinyLink 2.0 and TinyLink focus
on accelerating the IoT development process. TinyLink 2.0 reuses
TinyLink’s solution to generate IoT hardware configurations.
However, there are two important differences: (1) TinyLink is a
device-side development system. But TinyLink 2.0 is an integrated
development system for the three sides and focuses on its unique
challenges. It provides an integrated programming language that
includes features like implicit interactions, virtual sensors, and the
automatic generation and the optimization of device’s behaviors
instructed from the cloud, while TinyLink mainly focuses on the
hardware and software co-design of an IoT device. (2) TinyLink
does not support the development of multi-device IoT applications,
and does not consider complex interactions among three sides. The
set of TinyLink’s feasible hardware configurations is a subset of
TinyLink 2.0’s feasible hardware configurations.

TinyDB [21] is a distributed query processor that can collect
data from a sensor network of motes which run on top of TinyOS
operating systems. Its powerful runtime can automatically optimize
the declarative SQL-like queries. DSN [5] is a declarative sensor
network platform that aims to specify the sensor network system
stack within a few lines of code. LibAS [32] is a cross-platform

framework that enables rapid development of mobile acoustic
sensing applications. Developers only need to implement the
sensing signals and the callback function to handle each repetition
of sensing signals. However, these declarative platforms focus
on specific domains like network stack, data collection of sensor
networks, and mobile acoustic sensing applications. TinyLink 2.0
focuses on the domain of rapid development of IoT applications. It
faces unique challenges like integrating development of three sides
and simplifying interactions.

Beam [29] is a framework that simplifies IoT applications by
letting developers specify “what should be sensed or inferred”. Beam
introduces the key abstraction of an inference graph to decouple
applications from the mechanics of sensing and drawing inferences.
GIOTTO [2] is a safe, secure and easy-to-use open-source IoT
infrastructure which can capture and store a large amount of user
data, and provide data analytics services. However, TinyLink 2.0
can achieve the same effect by chaining multiple rules together and
automatically drawing inferences from rules. It can give additional
guidance on the IoT device generation. Furthermore, TinyLink 2.0
puts large amount of efforts in developing holistic IoT applications
including programs of three sides and multiple task operations.

IFTTT Framework. RT-IFTTT [15] extends the existing IFTTT
syntax for users to describe real-time constraints. It analyzes
elements of all the applets, and dynamically calculates efficient
polling intervals for each sensor. This interval reflects current
sensor values, their related trigger conditions, and real-time
constraints, with a sensor value prediction model. Liang et al. [19]
provide a safety-centric programming platform for connected
devices in IoT environments called SIFT. To simplify programming,
users express high-level intents in declarative IoT apps. The system
then decides which sensor data and operations should be combined
to satisfy the user requirements.

Unlike the above work, TinyLink 2.0 not only focuses on
how to write IFTTT rules, but also exploits the potential of
rapid development of multiple devices, as well as the cooperative
sensing and inference among all devices and the cloud. This can
achieve more improvements in power efficiency, application logic
expressiveness and fine-grained control of devices.

9 CONCLUSION
In this paper, we present TinyLink 2.0, a novel system which
integrates device, cloud and client side IoT development. The
programming language is expressive for diverse IoT applications, as
well as considerations about energy efficiency andmachine learning
support. TinyLink 2.0 extends traditional IFTTT syntax by adding
new keywords and syntax, and optimizes application performance
with both static and dynamic optimizers. We carefully evaluate
the performance by case studies, a user study, and experiments
of all its important components. Results show that TinyLink 2.0
can significantly speed up IoT application development, while
achieving high expressiveness and low overhead. Up to now, both
TinyLink [12] and TinyLink 2.0 are supported by our IoT testbed,
LinkLab (http://www.emnets.org/linklab) which allows remotely
developing and experimenting various IoT applications.

TinyLink 2.0: Integrating Device, Cloud, and Client Development for IoT Applications MobiCom ’20, September 21–25, 2020, London, United Kingdom

ACKNOWLEDGMENTS
We thank our shepherd and reviewers for their constructive
comments. This work is supported by the National Key R&D
Program of China under Grant No. 2019YFB1600700, the National
Science Foundation of China (No. 61772465 and No. 61872437),
Zhejiang Provincial Natural Science Foundation for Distinguished
Young Scholars under No. LR19F020001.

REFERENCES
[1] Joshua Adkins, Branden Ghena, Neal Jackson, Pat Pannuto, Samuel Rohrer,

Bradford Campbell, and Prabal Dutta. 2018. The signpost platform for city-scale
sensing. In Proc. of ACM/IEEE IPSN.

[2] Yuvraj Agarwal and Anind K Dey. 2016. Toward Building a Safe, Secure, and
Easy-to-Use Internet of Things Infrastructure. IEEE Computer 49, 4 (2016), 88–91.

[3] Hackster.io an Avnet community. 2019. The community dedicated to learning
hardware. https://www.hackster.io/about.

[4] AutoDesk. 2019. Instructables - Yours for the making.
https://www.instructables.com/.

[5] David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M Hellerstein, Philip Levis,
Scott Shenker, and Ion Stoica. 2007. The design and implementation of a
declarative sensor network system. In Proc. of ACM SenSys.

[6] Alibaba Cloud. 2019. IoT Platform: Connect to Devices via Data Transmission.
https://www.alibabacloud.com/product/iot.

[7] DFRobot. 2019. DFRobot - Quality Arduino Robot IoT DIY Electronic Kit.
https://www.dfrobot.com/.

[8] Colin Dixon, Ratul Mahajan, Sharad Agarwal, AJ Brush, Bongshin Lee, Stefan
Saroiu, and Paramvir Bahl. 2012. An operating system for the home. In Proc. of
NSDI.

[9] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2018. A programmable
programming language. Commun. ACM 61, 3 (2018), 62–71.

[10] Jon Froehlich, Joachim Neumann, Nuria Oliver, et al. 2009. Sensing and predicting
the pulse of the city through shared bicycling. In Proc. of IJCAI.

[11] Yi Gao, Wei Dong, Kai Guo, Xue Liu, Yuan Chen, Xiaojin Liu, Jiajun Bu, and
Chun Chen. 2016. Mosaic: A low-cost mobile sensing system for urban air quality
monitoring. In Proc. of IEEE INFOCOM.

[12] Gaoyang Guan, Wei Dong, Yi Gao, Kaibo Fu, and Zhihao Cheng. 2017. TinyLink:
A Holistic System for Rapid Development of IoT Applications. In Proc. of ACM
MobiCom.

[13] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. 2016.
Operating systems for low-end devices in the internet of things: a survey. IEEE
Internet of Things Journal 3, 5 (2016), 720–734.

[14] Raymond Hemmecke, Matthias Köppe, Jon Lee, and Robert Weismantel. 2010.
Nonlinear integer programming. In 50 Years of Integer Programming 1958-2008.
Springer, 561–618.

[15] Seonyeong Heo, Seungbin Song, Jong Kim, and Hanjun Kim. 2017. RT-
IFTTT: Real-Time IoT Framework with Trigger Condition-aware Flexible Polling
Intervals. In Proc. of IEEE Real-Time Systems Symposium (RTSS).

[16] Yidan Hu, Guojun Dai, Jin Fan, Yifan Wu, and Hua Zhang. 2016. BlueAer: A
fine-grained urban PM2.5 3D monitoring system using mobile sensing. In Proc.

of IEEE INFOCOM.
[17] Texas Instruments Incorporated. 2013. TI: The IoT technology leader.

http://www.ti.com/lit/ml/swpb013/swpb013.pdf.
[18] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:

comparing public cloud providers. In Proc. of ACM SIGCOMM.
[19] Chieh-Jan Mike Liang, Börje F Karlsson, Nicholas D Lane, Feng Zhao, Junbei

Zhang, Zheyi Pan, Zhao Li, and Yong Yu. 2015. SIFT: building an internet of safe
things. In Proc. of ACM IPSN.

[20] Roger A Light. 2017. Mosquitto: server and client implementation of the MQTT
protocol. Journal of Open Source Software 2, 13 (2017), 265.

[21] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. 2005.
TinyDB: an acquisitional query processing system for sensor networks. ACM
Transactions on database systems (TODS) 30, 1 (2005), 122–173.

[22] MJRoBot. 2017. IoT Made Easy w/ UNO, ESP-01, ThingSpeak & MIT App
Inventor. https://create.arduino.cc/projecthub/mjrobot/iot-made-easy-w-uno-
esp-01-thingspeak-mit-app-inventor-da6a50.

[23] Pablo Moscato et al. 1989. On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms. Caltech concurrent computation
program, C3P Report 826 (1989), 1989.

[24] Terence Parr and Kathleen Fisher. 2011. LL (*): the foundation of the ANTLR
parser generator. In Proc. of ACM Sigplan Notices.

[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[26] Niels Reijers and Chi-Sheng Shih. 2018. CapeVM: A Safe and Fast Virtual Machine
for Resource-Constrained Internet-of-Things Devices. In Proc. of ACM SenSys.

[27] Frank Ruskey and Mark Weston. 1997. A survey of Venn diagrams. Electronic
Journal of Combinatorics 4 (1997), 3.

[28] Paul H Schimpf. 2012. Modified protothreads for embedded systems. Journal of
Computing Sciences in Colleges 28, 1 (2012), 177–184.

[29] Chenguang Shen, Rayman Preet Singh, Amar Phanishayee, Aman Kansal, and
Ratul Mahajan. 2016. Beam: Ending Monolithic Applications for Connected
Devices. In Proc. of USENIX Annual Technical Conference.

[30] Meena Singh, MA Rajan, VL Shivraj, and P Balamuralidhar. 2015. Secure mqtt
for internet of things (iot). In Proc. of IEEE Communication systems and network
technologies (CSNT).

[31] Monsoon Solutions. 2019. Monsoon Power Monitor.
https://www.msoon.com/online-store.

[32] Yu-Chih Tung, Duc Bui, and Kang G Shin. 2018. Cross-Platform Support for
Rapid Development of Mobile Acoustic Sensing Applications. (2018).

[33] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L Littman. 2014.
Practical trigger-action programming in the smart home. In Proc. of ACM SIGCHI
Conference on Human Factors in Computing Systems.

[34] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, Jiyun Lee, Sarah Mennicken,
Noah Picard, Diane Schulze, and Michael L Littman. 2016. Trigger-action
programming in the wild: An analysis of 200,000 ifttt recipes. In Proc. of ACM
CHI Conference on Human Factors in Computing Systems.

[35] Zidong Yang, Ji Hu, Yuanchao Shu, Peng Cheng, Jiming Chen, and Thomas
Moscibroda. 2016. Mobility modeling and prediction in bike-sharing systems. In
Proc. of ACM MobiSys.

[36] Qian Zhicong, Luo Delin, and Wu Shunxiang. 2008. Analysis and design of
a mobile forensic software system based on AT commands. In Proc. of IEEE
International Symposium on Knowledge Acquisition and Modeling Workshop.

	Abstract
	1 Introduction
	2 TinyLink 2.0 Usage
	3 TinyLink 2.0 Overview
	4 System Design
	4.1 Programming Language
	4.2 Performance Optimization

	5 System Implementation
	6 Evaluation
	6.1 Experiment Setup
	6.2 Case Studies
	6.3 User Study
	6.4 Programming Language
	6.5 Performance Optimization.
	6.6 Overhead

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

