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Abstract—Nowadays, there is a growing trend to deploy
machine learning (ML) models on edge devices. To cope with
the increasing resource requirements of current ML models,
multi-accelerator edge devices that integrate CPU, GPU, NPU, or
TPU in a single SoC gain popularity. However, we observe that
existing ML inference serving frameworks are poor in utilizing
the unique hardware architecture of these edge devices. In this
paper, we present INFSCALER, an efficient ML inference serving
framework tailored for multi-accelerator edge devices. INFS-
CALER discovers the architectural bottleneck of ML models and
designs a bottleneck-aware asymmetric auto-scaling technique to
facilitate efficient resource allocation for ML models on the edge.
Furthermore, INFSCALER capitalizes on the hardware’s unified
memory feature inherent to edge devices, ensuring efficient data
sharing between the asymmetrically scaled model partitions.
Our experimental results show that INFSCALER achieves up to
126.59% throughput improvement and 27.32% resource reduc-
tion while satisfying the latency requirements compared with the
state-of-the-art inference serving approaches.

I. INTRODUCTION

Recently, deploying machine learning (ML) models on edge
computing devices rather than the cloud has gained significant
attention [1], [2], [3]. Building on this momentum, various
merchants such as NVIDIA [4], AMD [5], and Google [6]
present multi-accelerator edge devices to provide better ML
inference performance. For example, the NVIDIA Jetson se-
ries leverages System-on-Chip (SoC) architecture that inte-
grates a CPU, GPU, and NVIDIA Deep Learning Accelerator
(NVDLA) onto a single chip. These multi-accelerator devices
are now widely used in typical edge environments such as
autonomous driving [7], [8] and edge video analytics [9], [10].

Nevertheless, the energy and space limitation of edge en-
vironments makes it hard to match the increasing resource
demand of modern ML algorithms such as large language
models (LLMs). Prior attempts for efficient inference serving
on resource-constrained edge devices leverage model quantiza-
tion [11], [12], pruning [13] or sparsity [14]. These approaches
require modifying or retraining the original model, which will
lead to an accuracy drop or excessive training overhead.

If we refer to ML serving approaches without modifying the
model, which are mostly designed for the cloud, the primary
solutions are request batching [15], [16] and instance auto-
scaling [17]. The ingress requests are organized into batches
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Fig. 1. Illustration of the difference between INFSCALER and existing works.

to leverage the parallel processing capabilities of hardware
accelerators to improve efficiency. Once the request bursts and
results in the resource usage of an inference instance exceeding
a pre-defined resource cap, the cloud server will scale out, i.e.,
spawn new serving instances, for higher parallelism.

However, directly adopting these cloud-based solutions is
problematic for edge environments because they do not take
the unique hardware characteristics of edge devices into con-
sideration. (1) Existing works [15], [16], [17] replicate the
whole ML model to serve additional requests when scaling
out, but edge devices may not be facilitated with enough
resources for this coarse-grained scaling. For example, infer-
encing the gpt2-medium model requires ∼6GB memory.
While NVIDIA Xavier NX, a typical edge device, is only
equipped with 8GB which could not scale the whole model out
for bursty requests. (2) Existing ML serving frameworks [18]
treat accelerators such as GPU and NPU as peripherals with
independent memory management. However, there is a new
opportunity for multiple accelerators to cooperate more tightly
due to the hardware unified memory design at the edge.

Towards the above problems, we present INFSCALER, an
efficient ML inference serving framework tailored for edge
devices. Specifically, INFSCALER aims to achieve better in-
ference serving performance (i.e., throughput) while satisfying
the latency constraint of requests under a given resource
limitation. Considering the multi-accelerator architecture and
resource-constrained nature of edge devices, the key idea of
INFSCALER is scaling each group of ML operators, i.e., the
building blocks of an ML model, with different scaling ratios
for better resource efficiency. Unlike symmetrically scaling all
operators as a whole model, we call this approach asymmetric
auto-scaling, as shown in Fig. 1. This approach is based
on our observation (cf. §II-B) that ML models inherently
contain architectural bottlenecks due to the resource demands
of ML operators and their affinity towards accelerators, which
negatively impact overall inference performance. Selectively
scaling out the bottlenecks can achieve similar, even better,
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Fig. 2. Illustration of the computation complexity of AlexNet (top) and its
inference performance under different settings (bottom). Pa

x denotes the model
is partitioned at the end of operator #x and scaled out to a instances.

performance compared to whole model replication.
To facilitate asymmetric auto-scaling, we first identify the

bottlenecks through offline profiling and partition the ML
model into several groups of operators with fully aware of
the bottleneck. At runtime, we perform the asymmetric auto-
scaling and also take advantage of the hardware unified mem-
ory between heterogeneous accelerators to achieve efficient
accelerator-agnostic tensor sharing between the partitioned
models. Our contributions can be summarized as follows:
• We discover the architectural bottleneck of ML models

and its negative impact on the inference performance.
Based on this, we propose a bottleneck-aware asymmetric
auto-scaling strategy to utilize the precious resources on
the edge wisely for better performance.

• We advocate an accelerator-agnostic tensor sharing
mechanism by taking advantage of the hardware unified
memory property on edge devices.

• We implement INFSCALER and evaluate its performance
extensively. Results show that INFSCALER can improve
the inference throughput by 34.78%-126.59% and reduce
10.49%-27.32% resource usage while satisfying the la-
tency constraints.

II. BACKGROUND AND MOTIVATION

A. Hardware Architecture of Edge Devices

Nowadays, edge devices are equipped with AI accelera-
tors like GPUs, TPUs, and FPGAs to enhance performance
while keeping energy efficiency in ML processing. The most
prevalent edge ML devices are NVIDIA Jetson series, which
are widely used in autonomous driving, VR/AR, and robotics.
These devices include three generations identified as NVIDIA
Jetson, Xavier and Orin. For example, on NVIDIA AGX
Xavier, an 8-core Armv8.2 CPU, an integrated NVIDIA Volta
GPU (iGPU), and two NVDLA accelerators are located on the
same SoC, which is different from the desktop and servers.

Unified memory is originally a software concept in CUDA
programming aimed at simplifying CPU RAM and dGPU
VRAM management through unified addressing. NVIDIA
Jetson series leverages a hardware unified memory architecture
where all the accelerators share a common hardware main
memory. From the second generation (Xavier) on, hardware
cache coherence between CPU and iGPU further accelerates
memory sharing. This distinct feature provides a promising
starting point for our data-plane acceleration for serverless
inference on edge devices.

B. Architectural Bottleneck of ML Models

ML bottlenecks. ML models include multiple computation
operators such as convolution, pooling, and normalization.
However, the computational complexity disparity among op-
erators and their affinity towards heterogeneous accelerators
results in some of them serving as a bottleneck of the whole
model. To examplify, we use a representative ML model,
AlexNet, and study its inference performance on the NVIDIA
Xavier AGX multi-accelerator edge device in Fig. 2.

Observation 1: ML models inherently contain bottlenecks
due to the unbalanced distribution of the computation com-
plexity, which hinders the overall inference performance.

We can see from the figure that certain operators (e.g.,
#1, #5, #13) exhibit notably higher complexity compared to
others, resulting in their computation time being prominently
longer than other parts, which lowers the overall inference
throughput. We identify these layers are the “bottleneck” of
AlexNet. To make things worse, the traditional auto-scaling
mechanism of ML serving directly scales the whole model
when confronted with burst requests. However, on resource-
constrained edge devices, this coarse-grained scaling mech-
anism uniformly allocates additional resources to all layers,
potentially resulting in a waste of precious resources. Conse-
quently, a novel fine-grained scaling approach is imperative
for serverless ML inference on edge devices.

Impact of asymmetric auto-scaling. Based on the above
observation, we further investigate how to deal with the
architectural bottleneck of ML models for better inference.
We quantify the inference throughput and resource usage
under the same predefined resource cap. Results in Fig. 2
show that P2

5 P3
13P2

24 achieves the best performance among the
six configurations. It exhibits 16.5% throughput improvement
against the second-performed baseline P3

24, i.e., no partition
and scaling to three instances, with 31.5% less resources used.
The key takeaway of this improvement is this asymmetric
scaling can leverage wiser resource usage, which is allocating
more resources to the bottlenecks instead of distributing them
equally. Moreover, this improvement is also fragile. Also, from
the results of other partitioned baselines, we can see that
it requires a prudent model partition and scaling policy to
achieve optimal performance.

Observation 2: Asymmetric auto-scaling, i.e., selectively
scaling out the bottleneck with an appropriate ratio, can en-
hance the throughput performance with the same resources.

The above results demonstrate the potential for fine-grained,
asymmetric auto-scaling on edge devices. However, how to
wisely partition the model considering bottleneck and scales
out for optimized performance remains unsolved.

III. INFSCALER OVERVIEW

A. Design Principles

Throughout our system design of INFSCALER, we adhere
to the following guiding principles. (1) User-transparent.
As an ML inference serving framework, INFSCALER should
ensure users remain unaware of underlying complexities such
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as model partitions and fine-grained scaling mechanisms.
Additionally, INFSCALER should maintain model accuracy
without altering its structure to achieve this transparency.
(2) Hardware-oriented. INFSCALER targets the ML inference
on edge devices facilitated with heterogeneous accelerators
such as the NVIDIA Xavier series. Hence, we should fully
utilize the hardware characteristics of edge devices by design
to achieve better performance. (3) Throughput-aware. Max-
imizing throughput ensures INFSCALER achieves an efficient
usage of the limited resources on edge devices to process
a high volume of concurrent requests. Hence, we design
INFSCALER to maximize the throughput while satisfying the
latency service level objective (SLO) specified by users.
B. INFSCALER in a nutshell

Fig. 3 depicts the bird’s-eye view of INFSCALER system. It
has an offline phase to generate the optimized function deploy-
ment and an online phase to further improve the performance.

Offline deployment optimization. In the offline phase,
users submit their ML application to be deployed and the
corresponding ML models. Similar to the existing practices
such as the inference graph of KServe [19] and SageMaker
Pipeline of AWS [20], INFSCALER supports submitting an ML
application including multiple ML algorithms that formulate
a pipeline. For example, an NLP pipeline needs to first
run document classification, and then perform named entity
detection downstream based on the previous classification
results. As for ML models, INFSCALER do not require any
modification to ML models and users can directly submit the
unmodified ML models such as ONNX or PyTorch. One of
the main design principles of INFSCALER is to maximize the
inference throughput while satisfying the latency constraint.
Hence, it is necessary to address the architectural bottlenecks
of ML models during inference. A naı̈ve idea is to allocate
more resources to the bottleneck layers for better performance.
However, traditional ML serving frameworks cannot precisely
allocate additional resources only to the bottleneck because
they leverage a coarse-grained scaling mechanism. Hence, to
obtain the opportunity for precise resource allocation, INFS-
CALER first profiles for detailed performance metrics (e.g.,
FLOPs, execution time) and partitions the ML model into
slices for asymmetric auto-scaling.

Online ML inference serving. During the online serv-
ing process, INFSCALER optimizes the inference perfor-
mance in two ways. First, INFSCALER leverages asymmet-
ric auto-scaling in correspondence to the ingress request
variations. With the help of bottleneck-aware partitioning,
INFSCALER can only scale up the bottleneck part of the

model to achieve better resource efficiency. Second, INFS-
CALER achieves systematic support for multi-accelerator edge
devices by allowing the asymmetric auto-scaling to scale part
of the model to all accelerators. Furthermore, INFSCALER de-
signs an accelerator-agnostic tensor sharing mechanism that
leverages the hardware unified memory to efficiently share
outputs between model partitions.

IV. DESIGN OF INFSCALER

A. Asymmetric Auto-Scaling of ML models

As we demonstrated in §II-B, ML models include (multiple)
architectural bottlenecks that impede inference efficiency. In
this section, we show our detailed designs about how to
achieve asymmetric auto-scaling while fully aware of the
bottlenecks of ML models. We first detect the bottleneck and
figure out the optimal scaling-out policies. After that, we move
on to the resource allocation problem with a given partition
because the allocation of CPU and memory poses a significant
influence on the overall performance.

Offline bottleneck-aware partitioning. Designing a wise
partition algorithm requires us to consider the following trade-
off, where more partitions lead to an excessive overhead for
inter-partition communication but fewer partitions are not fine-
grained enough for efficient resource allocation. According to
§II-B, we find that computation complexity can be a source of
inference bottlenecks. To address the partition granularity and
overhead tradeoff, the main idea of INFSCALER’s partitioning
is to balance the computation complexity among the operators
in a partition. The intuition here is each partition is also a
minimum resource allocation unit. Operators inside a partition
scale up and down at the same time, which means the resources
are allocated evenly in a partition. If the partition contains
several operators with massive different complexities, the
largest operator will further become the new bottleneck in the
partition that impedes the overall performance.

Therefore, our bottleneck-aware partitioning problem could
be formulated as an optimization problem that minimizes the
variance of the computation complexity of each group while
keeping the latency satisfies the user-specified SLO:

argmin
P1,··· ,Pk

K∑
k=1

σ(Pk)

s.t.


T̂o +(K−1)Tp ≤ SLO
Pk = {cn|n ∈ [pk−1 +1, pk],cn >CN}
P1∪·· ·∪PK =CN

, (1)
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Algorithm 1: Asymmetric auto-scaling policy

Input: B = {B1, · · · ,BK}: set of bottleneck indicator;
Am

k ∈ Ak, um
k : hardware affinity and expected resource

usage of partition k on accelerator m;
Um, Rm: resource used and limit of accelerator m;
Output: Number of scaled instance S = {S1, · · · ,SK}

1 foreach SLO unsatisfaction detected do
2 k∗← argmaxK

k=1 Bk,B∗k ←maxK
k=1 Bk;

3 foreach Am
k∗ ∈ sort(Ak∗) do

4 if Um←Um + rm
k∗ < Rm then

5 Bk∗ ← Bk∗Sk∗
Sk∗+1 ;

6 Um←Um + rm
k∗ ; Sk∗ ← Sk∗ +1;

7 break;

which partitions an ML model with N operators into K
partitions. σ() stands for the calculation of standard variance.
Pk and pk are the computation complexity set and the index
of the last operator of partition k. cn ∈ CN is the compu-
tation complexity of n-th operator. T̂o means the predicted
model execution time, Tp denotes the overhead introduced
by partitioning. Instead of using all layers, INFSCALER only
considers the representative layers whose complexity is bigger
than the model average in this optimization (constraint #1).
This is because compared with the bottleneck layers, these
small layers have a very limited impact on the throughput and
resource allocation.

Online asymmetric auto-scaling policy. By “asymmetric,”
we mean that (1) the scaling factors of each partition can differ
from one another, and (2) partitions can be scaled to different
types of accelerators.

Algorithm 1 depicts the auto-scaling policy. Once detected
the serving performance cannot meet the user-specified latency
SLO, INFSCALER starts auto-scaling. First, we identify the
partition k with the maximum bottleneck indicator Bk (line 2),
which is defined as the sum of the computation complexity of
each operator in the partition

∑
Pk, serving as the target for

scaling out. This is because the partition with the highest Bk
has the greatest computational complexity and thus requires
scaling first. Then, INFSCALER determines on which acceler-
ator to scale partition k with the help of the profiled hardware
affinity, e.g., execution latency, and checks if the accelerator
has enough resources to accommodate it (lines 3, 4). If yes,
we reduce the bottleneck indicator of partition k to adjust its
future priority in scaling (line 5), record the resource usage,
and finally perform scaling (line 6). With this asymmetric
auto-scaling policy, INFSCALER dynamically scales out the
partition that needs more resources the most, which leads to
better resource efficiency and inference performance.

B. Accelerator-Agnostic Tensor Sharing

Although asymmetric auto-scaling brings intrinsic perfor-
mance gains, it also incurs more Inter-partition data trans-
mission. Therefore, it is imperative to meticulously devise a
systematic data flow design for sharing the input and output
tensors of each function.

Hardware Unified Memory

Partition 1

Accelerator-Agnostic Tensor Sharing Manager
Memory Allocator

OutToken

Token fault

②Write Data

Partition 2

ML Pipeline Map

InToken

Exec. Data flowSharing Control Flow

OutTokenInToken
③Token
Handover

⑤Read Data

eBPF-based Message

④Notification①Get Token

Fig. 4. Illustration of the accelerator-agnostic tensor sharing.

To improve data sharing efficiency, numerous works [21],
[17] leverage the zero-copy technique for tensor sharing. Zero-
copy means transferring solely an address pointer to shared
data instead of transferring all the data itself. Nonetheless,
these prior works of zero-copy data sharing devote less at-
tention to the following two unique problems in INFSCALER.
(1) The asymmetric auto-scaling technique leads the tensor
sharing problem to a multi-producer, multi-consumer (MPMC)
memory sharing scenario. For example, once a partition of an
ML model scales out asymmetrically to multiple instances, its
subsequent partition should acquire data from both the scaled
instances, i.e., multi-consumer, and its preceding partition
should share data with both instances, i.e., multi-consumer.
For example, when a partition of an ML model scales out
asymmetrically across multiple instances, it acts as multiple
data producers to distribute data to subsequent partitions.
by acquiring data from all involved instances. Conversely,
its preceding partition also needs to share data to multiple
consumers. (2) To make things worse, the data producers and
consumers can reside on heterogeneous accelerators. Hence,
INFSCALER proposes an accelerator-agnostic tensor sharing
mechanism to address the aforementioned problems.

eBPF-based event-driven sharing. Towards the MPMC
zero-copy sharing problem and preventing the data race be-
tween multiple instances, INFSCALER adopts an event-driven
sharing mechanism. Specifically, to share the data between
instances, the data producer should acquire a token (i.e.,
memory address) from INFSCALER before it can proceed
with writing data. After completing the write operation, the
producer then sends this token to the consumer as an event to
trigger the reading.

This token-based sharing has two merits. On the one hand,
compared with the widely-used polling-based zero-copy shar-
ing approach [17], it reduces the frequency of memory access
and achieves lower runtime overhead which is suitable for
edge environments. On the other hand, it transforms the ad-
hoc usage of shared memory into centralized management,
which gives us the chance to holistically manage the load
balancing among different scaled instances on heterogeneous
accelerators. We further optimize the centralized scheduling
overhead by leveraging eBPF for all the control flow com-
munications. An eBPF map is introduced to intercept the
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token fault for sidecar control flow and the token handover for
execution control flow of the inter-partition data sharing. Here
raises a new question: why not implement the memory sharing
manager directly in an eBPF function? This is because eBPF
functions reside in the kernel, which poses strict constraints on
execution time. If we push all the logic in the memory sharing
manager into an eBPF function, it incurs much overhead for
the kernel and may expand the attack surface. Moreover, eBPF
functions are not adaptive to the function deployment changes.
As INFSCALER is a general ML serving system, applications
deployed on top of our framework are versatile. Implementing
the memory sharing manager in a separate service in user
space is more adaptive for ever-changing applications.

Lazy sharing mechanism. Towards the data sharing be-
tween heterogeneous accelerators, we implement the above
zero-copy mechanism on the hardware unified memory which
all accelerators can access directly. Furthermore, INFS-
CALER adopts a lazy allocation mechanism to prevent ex-
cessive allocations of limited hardware unified memory on
edge devices. Lazy means instead of allocating all the shared
memory at once, INFSCALER allocates the memory when in-
stances report a memory shortage. We argue that this approach
will reach a dynamic balance of the input and output between
consecutive partitions.

The whole tensor sharing process is illustrated in Fig. 4.
The tensor sharing manager handles the overall new memory
allocation and inter-instance token exchange. When partition 1
tends to share the output with partition 2, it first checks if the
OutToken queue is empty. If there is a token, it writes data
to the corresponding region and hands over the token to the
consumer. If the OutToken is empty, partition 1 will send a
token fault to the tensor sharing manager. The sharing manager
will select an idle memory region and send its address back
for further usage.

V. EVALUATION

A. Experimental Setup

Testbed. We conduct the experiments on the NVIDIA
Xavier AGX development board, which is a widely used multi-
accelerator edge device.

Baselines. We compare INFSCALER against the follow-
ing baselines: (1) INFless [15]: An ML inference serving
framework that leverages auto-scaling and batching to im-
prove resource efficiency. (2) SPRIGHT [17]: A state-of-the-
art application serving framework that focuses on efficient
memory sharing mechanism for pipelined applications. (2)
Knative [18]: A widely-used open-source ML serving system
based on Kubernetes. We apply our partitioned and configured

TABLE I
APPLICATION BENCHMARKS USED FOR EVALUATION.

Benchmark ML Pipeline Involved Models

Traffic
Monitoring

(TM)

Vehicle detection(❶SSD), 
Vehicle model recognition(❷ShuffleNet)

Language
Translation

(LT)

Semantic feature extraction(❶Transformer), 
Cross-language conversion(❷Transformer), 
Target statement decoding(❸Transformer)

Person
Tracking

(PT)

Human detection(❶TinyYOLOv3), 
Person identity finding(❷VGG)

License Plate
Recognition

(LPR)

Image super-resolution(❶ResNet100), 
Character recognition(❷MobileNet)

Video
Understanding

(VU)

Video content analysis(❶Inception), 
Content Understanding(❷BERT)

❶ ❷

❶ ❷ ❸

❶ ❷

❶ ❷

❶ ❷

functions on Knative without the hardware-oriented memory
sharing to see how it performs.

Benchmarks. We excerpt five production ML applications
from [15], [22] as benchmarks in our evaluation, as shown in
Table I. Furthermore, to evaluate INFSCALER under real-world
workloads, we replay the Microsoft Azure Functions (MAF)
dataset [23] which records approximately 46,000 requests of
Azure cloud services.

B. Evaluation Results

Throughput optimization. Fig. 5 shows the results of how
INFSCALER optimizes the model inference throughput com-
pared with existing approaches. We can see from the result that
INFSCALER achieves 34.78%, 48.14%, and 126.59% average
improvement on throughput compared with SPRIGHT, INF-
less, and Knative. We can also observe that INFSCALER per-
foms better in harsh workloads. For example, under the low
workload pressure (SLO=3.0x), INFSCALER achieves 23.87%
throughput improvement against the best-performed counter-
parts, SPRIGHT. When it comes to high workload pressure
(SLO=1.5x), INFSCALER can achieve 40.82% performance
gain. This is because higher pressure makes efficient resource
usage more critical; even slight inefficiencies can lead to
substantial performance degradation.

We then elaborate more on the different improvements
against different approaches. The most noticeable improve-
ment is when compared with Knative and INFless. INFless
leverages batch mechanism to improve resource efficiency,
but its coarse-grained auto-scaling hinders the performance on
edge devices. On the other side, SPRIGHT achieves the best
performance among the baselines. As we all know SPRIGHT
does not include a partitioning algorithm, it focuses on the
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TABLE II
RESOURCE USAGE (MEMORY IN MB) COMPARISON AGAINST BASELINES

UNDER THE REAL-WORLD MAF WORKLOAD [23].

Benchmark INFSCALER SPRIGHT INFless Knative

TM 7570.85 9732.45 8489.23 10416.96
LT 13808.67 14735.2 15848.44 N/A
PT 10935.03 13979.08 12216.01 13383.16

LPR 5573.82 6882.41 7007.03 6993.59
VU‡ 15706.17 N/A N/A N/A

‡ Under the real-world workload, the state-of-the-arts fails to meet the
SLO of VU application while INFSCALER succeed.
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efficient data sharing between different serving instances. The
ML applications we used as baselines are composed of several
steps, which are suitable for SPRIGHT. However, similar to
INFless, it also leverages coarse-grained scaling which misses
the opportunity to achieve efficient resource usage.

Resource usage efficiency. We then move on to evaluate
INFSCALER under real-world workloads and compare the
resource usage efficiency against baselines. Table II shows the
resource usage, i.e., memory, comparison against baselines.
The workload pressure is set to medium, i.e., SLO=2.0x. We
can see from the table that INFSCALER achieves 10.49%-
27.32% of resource usage reduction against state-of-the-arts.
More importantly, INFSCALER is the only framework that
finishes the VU application under the SLO constraint. We
attribute this improvement to the asymmetric auto-scaling
which facilitates an unbalanced but efficient resource usage
of different parts of ML models. Furthermore, the second-best
approach varies between SPRIGHT and INFless, suggesting
that solely focusing on scaling and data sharing may not
always yield optimal performance. In addition to asymmetric
auto-scaling, INFSCALER also optimizes the tensor sharing
overhead, ultimately resulting in improved performance.

Overhead analysis. The overhead of INFSCALER mainly
comes from the tensor sharing latency and the additional
resources used for supporting multiple instances after partition.

We first evaluate the tensor sharing overhead in Fig. 6.
INFSCALER– indicates the latency without our eBPF-based
control-plane optimization. We can see that the data transfer-
ring overhead is reduced to less than 1 ms with our accelerator-
agnostic tensor sharing mechanism, which is neglectable com-
pared with tens or hundreds of milliseconds of inference
latency. As for the resource overhead, we present a detailed
measurement of the resource usage under different throughputs
in Fig. 7. Comparing with SPRIGHT, the best-performed
baseline, we observe that at low throughputs, the memory
overhead leads to excessive resource usage because SPRIGHT
does not include a partitioning strategy. As the throughput in-

creases, the benefit of our asymmetric auto-scaling outweighs
the overhead. We also argue that this runtime overhead could
be further reduced with the runtime sharing approaches [24],
which we identify as the future direction of INFSCALER.

VI. RELATED WORK

INFSCALER builds upon various projects and research. In
this section, we summarize the existing works on ML inference
serving that shed light on the design of INFSCALER.

To optimize the inference latency and achieve cost ef-
ficiency, some existing works use adaptive batching [25],
[16], [26] while others focus on how to allocate resources
of each ML serving instances [27]. The most related work to
INFSCALER is INFless [15]. Instead of “patching” existing
ML serving systems such as AWS Lambda [28] or Azure
Functions [29], INFless presents a domain-specific inference
system leveraging adaptive batching and cold-start mitigation
mechanism to support ML inference tasks better. Compared
with existing works, INFSCALER adopts an orthogonal view
on inference serving, which is optimizing the structural bot-
tleneck of AI models with auto-scaling. Another difference is
INFSCALER targets the inference on edge devices that exhibit
different hardware characteristics against cloud servers.

Due to the limited resources of edge devices, plenty of
research on edge ML inference focuses on reducing resource
usage or involving additional computing devices [1]. One of
the well-studied optimizations is model pruning [13], [30].
It could reduce the model size and execution time to adapt
to edge or IoT devices. For example, DyGNN [13] presents
a software-hardware co-optimization approach for efficient
GNN pruning and inference. However, model pruning ap-
proaches mostly need re-training or sacrifice accuracy limiting
its utilization. There are also many works leveraging edge-
cloud collaboration to improve inference performance. Several
works [31], [32] split the ML model and distribute the ML
partitions to edge and cloud for better latency and energy. Or-
thogonal to the above optimization attempts, INFSCALER takes
the advantages of the auto-scaling technique and proposes an
asymmetric auto-scaling approach with the help of bottleneck
identification to make a wiser usage of limited edge resources.

VII. CONCLUDING REMARKS

This paper presents INFSCALER, a machine learning (ML)
inference serving framework designed to address the chal-
lenges of inference on edge devices. By identifying archi-
tectural bottlenecks within ML models and implementing a
bottleneck-aware asymmetric auto-scaling technique, INFS-
CALER facilitates fine-grained resource allocation on the edge,
resulting in significant throughput improvements while adher-
ing to latency SLOs. Leveraging the unified memory char-
acteristic of multi-accelerator edge devices, INFSCALER ef-
ficiently reduces the partitioning overhead by an accelerator-
agnostic tensor sharing mechanism. The experimental results
underscore the effectiveness of INFSCALER by achieving
69.8% throughput improvement on average and up to 27.3%
resource usage reduction, showcasing its potential to enhance
edge-based ML inference capabilities while meeting stringent
performance requirements.
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