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Abstract
Deploying large language models (LLMs) with001
low-rank adaptation (LoRA) on mobile devices002
is promising due to their capability to com-003
plete diverse domain-specific tasks while en-004
suring privacy and accessibility. In this pa-005
per, we introduce MobiLoRA to accelerate006
LoRA-based LLM inference on mobile de-007
vices. MobiLoRA focuses on optimizing the008
key-value (KV) caches due to the limited com-009
puting and memory resources of mobile de-010
vices. The key insight of MobiLoRA lies in011
the utilization of two contexts for on-device012
LoRA serving: semantic-level contexts, such013
as prompts with shared prefixes, and system-014
level contexts, such as the application status015
(e.g., foreground or killed) of LLM requests.016
Specifically, for semantic-level contexts, Mo-017
biLoRA proposes similarity-aware delta en-018
coding, which leverages token-wise similarity019
in KV caches across LoRA adapters for ef-020
ficient storage and reuse. Furthermore, Mo-021
biLoRA advocates context-aware KV cache022
management to optimize cache eviction consid-023
ering the system-level contexts. We implement024
MobiLoRA and compare it with state-of-the-025
art LLM serving frameworks using real-world026
mobile device traces. Results show that Mo-027
biLoRA accelerates LoRA-based LLM infer-028
ence by 18.1%~80.5% on mobile devices.029

1 Introduction030

Deploying pre-trained large language models031

(LLMs) directly on mobile devices (e.g., smart-032

phones) is crucial considering data privacy and033

service accessibility (Yi et al., 2023a; Kong et al.,034

2024b). To specialize pre-trained models for di-035

verse domain-specific demands on the device, low-036

rank adaptation (LoRA) (Hu et al., 2022; Dettmers037

et al., 2024) is a widely used parameter-efficient038

fine-tuning technique. LoRA retains the base039

model parameters and introduces plug-and-play040

adapters to Transformer layers for fine-tuning, typ-041

ically with a size of tens of megabytes. Major042

mobile device vendors such as Apple and Google 043

heavily rely on LoRA adapters for their on-device 044

intelligent services (Gunter et al., 2024; Android 045

Developers, 2023). 046

Given the promise of LoRA-based LLMs, serv- 047

ing a set of adapters with the base model efficiently 048

attracts much attention. Researchers make efforts 049

to serve numerous LoRA adapters in the datacen- 050

ter (Wu et al., 2024a; Sheng et al., 2024; Chen et al., 051

2024; Kong et al., 2024a). Focusing on throughput, 052

these works merge multiple LoRA adapters with 053

the base model and leverage handcrafted CUDA 054

kernels to support the batched inference of the 055

fused model. In contrast, for on-device LLM in- 056

ference, latency metrics such as time-to-first-token 057

(i.e., TTFT) are critical since real-time interaction 058

and handling of individual requests are common 059

on mobile devices. Other mainstream LLM serv- 060

ing frameworks (Kwon et al., 2023; Gao et al., 061

2024b; Liu et al., 2024; Lin et al., 2024) focus 062

on storing the intermediate states, i.e., key-value 063

(KV) cache, to avoid repetitive computation across 064

requests with shared prefixes. The limited com- 065

puting and memory resources on mobile devices 066

underscore the importance of reusing KV cache. 067

However, existing approaches are not directly ap- 068

plicable to LoRA-based LLMs because KV cache 069

for different adapters is not reusable even when 070

requests are identical. Hence, serving LoRA-based 071

LLMs efficiently is challenging on mobile devices. 072

Fortunately, two unique opportunities on mobile 073

devices are underexploited for accelerating LoRA- 074

based LLM inference, namely semantic-level and 075

system-level contexts. 076

(1) Reusing semantic-level contexts. During 077

daily usage of mobile devices, requesting differ- 078

ent LoRA adapters with the same semantic-level 079

contexts, i.e., prompts and user inputs, is com- 080

mon (Hong et al., 2023; Wu et al., 2024b). For 081

instance, users first use a proofreading adapter to 082

refine the text when writing an email and then con- 083
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dense the same paragraph with a summarization084

adapter. Although the KV caches are different for085

the same tokens on different adapters, our prelimi-086

nary experiments show that they exhibit high token-087

wise similarity. This similarity facilitates the effi-088

cient encoding and reusing of the KV caches for089

LoRA adapters under semantic-level contexts.090

(2) Exploiting system-level contexts. Besides the091

semantic-level contexts, another unique character-092

istic of on-device LLM inference is the easy access093

to system-level contexts such as application sta-094

tus that queries the LLM, e.g., foreground active095

or killed. Utilizing this kind of context brings a096

broader optimization space for efficient LLM serv-097

ing on mobile devices. For example, when a user098

kills an application, KV caches associated with that099

application’s queries are probably not reused. It100

is prudent to evict the cache and free up space for101

other active applications.102

Leveraging the above opportunities, we propose103

MobiLoRA to accelerate the inference of LoRA-104

based LLMs on mobile devices. Considering the105

limited resources on mobile devices, we introduce106

a new attention mechanism, CtxAttention, to en-107

hance the reusability of the KV cache via on-device108

contexts. Based on CtxAttention, for semantic-109

level contexts, MobiLoRA proposes similarity-110

aware delta encoding for the KV cache of shared111

prefixes on different LoRA adapters, facilitating its112

efficient storage and reuse. For system-level con-113

texts, MobiLoRA leverages a context-aware KV114

cache management to optimize the preservation115

and eviction of the KV cache. Beyond the widely-116

used management based on least recently used117

(LRU) (Zheng et al., 2023; Kwon et al., 2023), Mo-118

biLoRA involves the application status that queries119

the LLM when deciding KV cache eviction. We im-120

plement MobiLoRA on top of the state-of-the-art121

LLM serving system, SGLang (Zheng et al., 2023),122

and extensively evaluate the framework based on123

real-world mobile application usage traces. Results124

show that MobiLoRA accelerates the on-device125

LoRA-based LLM inference by 18.1%~80.5% in126

terms of time-to-first-token (TTFT). This paper127

makes the following contributions:128

• To the best of our knowledge, this is the first129

work to optimize the KV cache of LoRA-130

based LLM on mobile devices. This optimiza-131

tion is motivated by our observation of utiliz-132

ing semantic- and system-level contexts for133

inference efficiency improvement.134

Q

 LoRA-based LLM

LLM

KV
cache ⋯

KV
cache

LoRA LoRA

n-th Transformer Block

Attention Add & 
Norm

Add & 
Norm

Feed
Forward

�� ∈ ��×�

��
�⋯

K V

X

O

e.g., LoRA matrix applied to V

��
�

Figure 1: On-device deployment of LoRA-based LLM,
exemplified using FinGPT adapter.

• Based on our observations, we propose a 135

similarity-aware delta KV cache encoding 136

used by different LoRA adapters and a 137

context-aware KV cache management strat- 138

egy for efficient on-device KV cache reuse. 139

• We implement MobiLoRA and extensively 140

evaluate its performance. Results show that 141

our approach enhances the efficiency of on- 142

device natural language processing tasks. 143

2 Background and Motivation 144

In this section, we first introduce the on-device 145

LoRA-based LLM and the difficulty of reusing 146

the KV cache with LoRA. We then present the 147

observations that guide the design of MobiLoRA. 148

2.1 Basics of On-device LoRA Serving 149

LoRA-based LLM for mobile devices. LoRA- 150

based fine tuning of LLM is now widely adopted 151

on mobile devices. Major mobile device manufac- 152

turers leverage LoRA in their on-device intelligent 153

services, such as Apple Intelligence (Apple, 2024) 154

and Android AICore (Android Developers, 2023). 155

To meet diverse daily demands with constrained 156

resources, on-device LoRA-based services gener- 157

ally follow a single-model, multiple-adapters ap- 158

proach, illustrated in Fig. 1. The LoRA adapters 159

are selectively activated according to the requests. 160

For example, Apple Intelligence leverages an LLM 161

with 3B parameters as the base model and offers 162

various LoRA adapters for different scenarios, such 163

as writing tools that include text proofreading and 164

rewriting, notification prioritizing, and smart reply. 165

Challenging to reuse LoRA-based KV cache. 166

Due to the autoregressive nature of LLM inference, 167

the generation of each token uses the hidden state 168

of all its preceding tokens. Storing these hidden 169

states, referred to as key-value (KV) cache, for 170

future token generation is able to avoid repeated 171

computation. Therefore, utilizing the KV cache 172

has become a popular technique for accelerating 173

LLM inference. Various KV cache frameworks are 174
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Figure 2: Key (left) and value (right) cache similarity of
based pretrained model and LoRA fine-tuned model.

proposed such as vLLM (Kwon et al., 2023) and175

SGLang (Zheng et al., 2023). Apart from using176

the KV cache within a single request, these frame-177

works also investigate the potential to reuse the178

cache in multi-turn conversations or across differ-179

ent requests. The rationale behind this opportunity180

is KV cache can be reused between the prompts181

that share the same prefix.182

However, for LoRA-based LLMs, direct KV183

cache reuse across LoRA adapters is impractical.184

We exemplify with FinGPT LoRA adapter fine-185

tuned on Llama2-7b based model. FinGPT applies186

low-rank matrices to the calculation of Q, K, and V187

of each Transformer layer. Fig. 1 shows the exam-188

ple of the calculation of V. LoRA converts the origi-189

nal calculation V = xWv to V ′ = xWv+xW a
v W

b
v ,190

where x is the attention input, Wv ∈ Rh×d is the191

projection matrix of V. W a
v ∈ Rh×r, W b

v ∈ Rr×d192

are low-rank matrices with rank r. Similarly, we193

have the attention score with LoRA:194

AttnLoRA = softmax(
Q′K ′T
√
dk

V ′), (1)195

where Q′ and K ′ are the updated values of Q and196

K because of LoRA, dk is the hidden dimension.197

The KV cache with LoRA (K ′, V ′) is different198

from the ones without LoRA (K, V ), and the non-199

linear softmax operation further leads to the reuse200

of the KV cache impractical. To make things worse,201

due to the autoregressive generation, the discrep-202

ancy between with and without LoRA propagates203

through deeper layers and subsequent tokens.204

2.2 Opportunities of Exploiting Contexts205

Semantic-level context. During the daily use of206

mobile devices, the semantic-level context, i.e.,207

similar or even identical prompts, sent to different208

LoRA adapters are common. To investigate how to209

efficiently reuse the semantic-level context, we con-210

duct a preliminary experiment. We feed the same211

prompt excerpted from ShareGPT (ShareGPT,212

2023) to the base Llama-7B model and FinGPT213

LoRA fine-tuned model. We then compare the simi- 214

larity of the KV cache of the two models, illustrated 215

in Fig. 2. We have the following observations. 216

Obs. #1: KV cache similarity exists among dif- 217

ferent LoRAs with the same prompt. We observe 218

a maximum 97% and 95% similarity in key and 219

value cache. With this similarity, there exists an 220

opportunity to store only incremental differences of 221

the KV cache from different LoRAs to reduce the 222

memory consumption, which is especially limited 223

on mobile devices. 224

Obs. #2: Token-wise decreasing pattern of sim- 225

ilarity is observed. Specifically, the similarity is 226

more pronounced in the shallow Transformer lay- 227

ers, and it decreases as the layer goes deeper. The 228

rationale behind this pattern is as the layer goes 229

deeper, more LoRA outputs are merged with the 230

base model’s output, leading to more different KV 231

tensors. How to exploit this observation to enhance 232

the KV cache encoding efficiency requires substan- 233

tial design of MobiLoRA. 234

System-level contexts. KV cache management, 235

e.g., eviction, is necessary since the limited re- 236

source on mobile devices prevents the cache grow 237

continuously. However, commonly used LRU- 238

based eviction falls short in certain scenarios. For 239

example, when an application is terminated by 240

users, the KV caches of the LLM requests sent by 241

the terminated application are typically no longer 242

needed and should be evicted first. This system- 243

level context is hardly accessible for serving frame- 244

works in datacenters since their requests are initi- 245

ated by external applications. In terms of on-device 246

serving, MobiLoRA has easy access to this context, 247

leading to a new horizon for KV cache manage- 248

ment. Hence, we have the following observation: 249

Obs. #3: Leveraging the system-level contexts is 250

beneficial to the efficient KV cache management. 251

3 MobiLoRA Design 252

Guided by the opportunities mentioned above, we 253

design MobiLoRA. Fig. 3 shows the overall system 254

architecture. The core of MobiLoRA is a new atten- 255

tion mechanism, CtxAttention, which facilitates 256

the exploitation of contexts to manage LoRA KV 257

cache. Based on CtxAttention, our system pro- 258

poses a similarity-aware KV cache delta encoding 259

mechanism for efficient LoRA KV cache storage 260

with semantic-level contexts and a context-aware 261

KV cache management policy with the considera- 262

tion of system-level contexts. 263
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Figure 3: MobiLoRA architecture overview.

3.1 CtxAttention for LoRA-based LLM264

To leverage the potential of on-device con-265

texts, we introduce a new attention mechanism,266

CtxAttention, to facilitate the context-aware KV267

cache reuse for LoRA-based LLMs. As shown268

in Fig. 3, CtxAttention includes a context-aware269

radix tree and a LoRA KV pool. Inspired by Radix-270

Attention, CtxAttention leverages a radix tree to271

map the cached token sequences to their KV cache272

tensors and further enhances it with the following273

two aspects.274

To reuse cross-LoRA semantic-level contexts,275

CtxAttention extends the radix tree to store mul-276

tiple mapping information (offset and len to KV277

pool) for different LoRA instances (#LoRA) at the278

same edge of the tree. In the LoRA KV pool, the279

KV cache tensors of the first recorded LoRA re-280

quest are stored in their original form, referred to as281

the anchor tensor. Subsequent KV cache tensors of282

other adapters are encoded as the difference from283

the anchor KV, known as delta tensors, to improve284

storage efficiency. This anchor information is also285

stored in the context-aware radix tree. With the286

above context information, the attention score with287

LoRA in Eq. 1 can be transformed as follows with288

the reuse of anchor KV cache:289

AttnLoRA = softmax[
Q(KA ⋆ K∆)

T

√
dk

(VA ⋆V∆)],

(2)290

where KA and VA are the anchor key and value291

tensors, i.e., existing KV cache. K∆ and V∆ are292

the delta tensors. Operator ⋆ denotes the decoding293

of the delta tensor with its anchor tensor.294

To exploit on-device system-level contexts,295

CtxAttention additionally record the application296

id (app_id) besides LRU information. These data297

help MobiLoRA to improve the KV cache man- 298

agement with the understanding of the application 299

state on mobile devices. 300

3.2 Similarity-aware Delta KV Encoding 301

Based on the aforementioned token-wise similarity 302

(Obs. #1) among different LoRA adapters, Mo- 303

biLoRA leverages a delta encoding method to ef- 304

ficiently store and reuse the KV cache. The en- 305

coding process includes the following two steps. 306

First, LoRA-associated prefix matching determines 307

which input tokens should be encoded with delta. 308

Then, a layer-wise delta encoding calculates the 309

delta considering the KV cache similarity. 310

LoRA-associated prefix matching. With the 311

CtxAttention mechanism, when a new request 312

arrives, MobiLoRA compares the prefix of the 313

prompt in the radix tree to find a matched prefix. 314

If matches and the input LoRA is different from 315

the existing KV cache, the similarity-aware delta 316

encoding is triggered. If there is no matched prefix, 317

MobiLoRA will store the KV cache of the input 318

as the anchor tensor and create a new edge in the 319

radix tree with the inputs. 320

Layer-wise delta encoding. Aligned to various 321

quantization schemes of LLMs, KV caches have 322

different data types such as 8-bit integer (INT8) 323

and 16-bit floating-point (FP16). For the integer 324

KV cache, calculating the delta of tensors with 325

high similarity decreases the absolute value of the 326

tensor, making it possible to use fewer bits to rep- 327

resent it. Therefore, MobiLoRA directly leverages 328

arithmetic coding (Liang et al., 2018) for encoding. 329

However, encoding the floating-point KV cache, 330

which is more common in real-world deployment, 331

faces non-trivial challenges. Despite the relatively 332
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small absolute value of the floating-point delta, the333

strong randomness of the ending mantissa bits in334

its representation makes it difficult to achieve a335

high lossless compression ratio. Considering the336

limited computation and storage capacity of mobile337

devices, we encode the floating-point delta by an338

error-bounded quantization for a high compression339

ratio. Take the key cache encoding as an example.340

We use KI to denote the input key cache tensor341

being encoded with an existing KA. Following342

the idea of sz compression, we calculate an error-343

bounded delta quantization between KI and KA:344

K∆ = ⌊ KI −KA

2 log(1 + ϵ)
+ 0.5⌋, (3)345

where K∆ is the resulting error-bounded and quan-346

tized representation of the tensor delta. The selec-347

tion of error-bound parameter ϵ (e.g., 1E-4, 1E-5)348

is the key to balancing the encoding precision and349

compression ratio. Driven by the insight of decreas-350

ing pattern of similarity (Obs. #2), we apply more351

relaxed error bounds for deeper layers. Specifi-352

cally, for each token, we continuously monitor its353

KV cache similarity against the anchor tensor. We354

split the layers into multiple similarity groups, i.e.,355

layers with high similarity (>97.5% in our current356

implementation), medium similarity, and moder-357

ate similarity (<85%). We then apply different ϵ358

to each group: 1E-4 for high similarity, 1E-3 for359

medium similarity, and 1E-2 for moderate similar-360

ity. The encoding of the value cache is similar.361

It is worth noting that these error-bound param-362

eters are not empirically set. Parameters should363

be adjusted for specific base model architectures,364

taking into account the number and dimension of365

attention heads.366

3.3 Context-aware KV Cache Management367

We first demonstrate how system-level contexts368

are recorded and propose a utility-based KV cache369

Algorithm 1 Context-aware KV Management

1: Input: Prefix tree nodes n ∈ Nt; Input KV
cache nin; KV cache size function size(); Util-
ity function U(); Memory budget M;

2: Output: Nt for every time step t
3: Initialize: N0 = ∅, U(N0) = 0, Nevict = ∅
4: for each time step t do
5: Update U(n) for each n ∈ Nt−1

6: if size(Nt−1) + size(nin) ≤M then
7: Nt ← Nt−1 ∪ {nin}
8: else
9: while size(Nevict) < size(nin) do

10: N′
t ← Nt−1 ∪ {nin}

11: nevict ← argminni∈N′
t
U(ni | N′

t \ ni)
12: Nt ← N′

t \ {nevict}
13: if nevict ̸= nin then
14: Nevict ← Nevict + nevict
15: end if
16: end while
17: end if
18: end for

eviction mechanism instead of LRU for efficient 370

on-device LoRA inference. 371

System-level context representation. As 372

shown in Fig. 4, the state transitions during the 373

application process lifecycle on different mobile op- 374

erating systems (OSes) are different (Zheng et al., 375

2024; Lee et al., 2016). By design, MobiLoRA is 376

supposed to serve as an OS-agnostic middleware 377

for LLM serving. Hence, we map both lifecycle 378

models to a general three-state model, i.e., fore- 379

ground, background, and killed. We implement a 380

lightweight state monitor as a plug-in to various 381

mobile systems that tracks the state transitions of 382

all applications associated with KV caches. 383

Utility-based KV cache eviction. Evicting stale 384

KV caches when the cache pool is full is a criti- 385

cal management consideration in MobiLoRA. Tak- 386

ing advantage of the system-level contexts, Mo- 387

biLoRA ranks the KV caches by their utility for 388

future reusing. We define the utility of a KV cache 389

node n in the CtxAttention radix tree with three 390

parts: the application state score S(a) of applica- 391

tion a associated with n, the LRU score T(n), and 392

the length of the KV cache L(n). Specifically, we 393

have the following formulation: 394

U(n) = λsϕs

(∑
a∈An

S(a)

)
+λtϕt (T(n))+λlϕl (L(n)) .

(4) 395
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Here, An denotes the application set associated396

with node n. λs, λt, and λl are hyperparameters397

that controls the focus of the three scores. ϕs,398

ϕt, and ϕl are monotone, non-negative functions,399

which ensures the U(n) to be submodular (Kumari400

et al., 2024; Bilmes, 2022).401

During cache eviction, nodes with the lowest402

U(n) are purged first, ensuring foreground app403

caches persist under memory pressure while obso-404

lete entries are reclaimed proactively. This mecha-405

nism bridges system-level contexts with KV cache406

management, leading to optimized user-perceived407

responsiveness and memory efficiency. Since U(n)408

is a submodular function, according to the prop-409

erties of submodular functions (Bilmes and Bai,410

2017), we leverage a greedy algorithm to obtain411

a suboptimal solution within a factor of (1− 1/e)412

in a finite number of steps. Hence, we have the413

context-aware KV management algorithm in Alg. 1.414

For each time step, MobiLoRA updates the util-415

ity of each node in the prefix tree (line 5). Then,416

MobiLoRA determines if it needs to evict the KV417

cache according to the memory budget (line 6). If418

the memory budget is not reached, the input KV419

cache is directly stored in the KV pool (line 7). Oth-420

erwise, MobiLoRA leverages a greedy algorithm to421

select the stale cache nodes with low utility scores422

with Eq. 4 and evict it (lines 8-16).423

4 Evaluation424

In this section, we first introduce the implementa-425

tion details and the experiment setup of MobiLoRA.426

Then, we show the performance of MobiLoRA in427

the following aspects: the end-to-end performance428

to reduce the time-to-first-token latency, the gen-429

eration quality with our delta encoding, and the430

ablation study.431

4.1 Experiment Setup432

We implement MobiLoRA on the state-of-the-art433

LLM serving framework, SGLang (Zheng et al.,434

2023). The similarity-aware delta KV encod-435

ing is implemented using the open-source data436

compression library, sz. We conduct evaluations437

on the widely-used mobile development platform,438

NVIDIA AGX Orin, under the experiment setups439

specified below.440

Scenarios. We use Llama2-7B (Touvron et al.,441

2023) as the base model, and we obtain ten real-442

world open-source LoRA adapters in our evalua-443

tion. To evaluate the MobiLoRA’s performance444

Table 1: Evaluation scenario configurations.
Scenarios S1 S2 S3 S4 S5

# LoRA adapter 5 5 5 10 10
Memory budget (GB) 2.0 4.0 4.0 2.0 4.0
Max input len. (token) 1024 1024 2048 1024 2048

in various configurations, we select five evaluation 445

scenarios with different numbers of LoRA adapters, 446

memory budgets for the KV cache pool, and the 447

max input length of each request. The detailed con- 448

figurations are depicted in Tab. 1. All the models 449

and adapters are collected from HuggingFace. 450

Tasks and workloads. We mainly consider 451

two natural language processing (NLP) tasks that 452

are popular on mobile devices. (1) Conversation 453

task represents the LLM-empowered chatbots on 454

mobile devices similar to Apple Siri and Sam- 455

sung Bixby. We use ShareGPT (ShareGPT, 2023) 456

dataset for this task. (2) Writing task is another 457

popular LLM-base tasks that heavily rely on LoRA 458

adapters, such as the writing tools of Apple Intelli- 459

gence. We use Xsum (Narayan et al., 2018) dataset 460

for this task. 461

Due to the absence of a real-world LoRA re- 462

quest trace dataset for mobile devices, we syn- 463

thesize workload traces using the China-telecom 464

dataset (Yu et al., 2018) for application usage traces 465

for the above two NLP tasks. We tokenize each 466

request to simulate arrival patterns with different 467

adapter distributions. The adapters in the dataset 468

follow the Pareto distribution, representing concen- 469

trated usage of frequently used apps. All datasets 470

are downloaded from their public websites and con- 471

form to their intended usage. 472

Baselines. We use various state-of-the-art LLM 473

serving engines as comparison baselines. (1) Hug- 474

gingface PEFT (Mangrulkar et al., 2022), which 475

is the default inference engine for HuggingFace. 476

(2) vLLM (Kwon et al., 2023), which introduces 477

PagedAttention for efficient KV cache memory al- 478

location. (3) S-LoRA (Wang et al., 2020; Zheng 479

et al., 2023), which is built on SGLang and en- 480

hances the LoRA serving ability. 481

For vLLM, we control the GPU memory 482

preallocated for the KV cache by setting the 483

gpu_memory_utilization parameter in the en- 484

gine, ensuring it aligns with the specified memory 485

budget. Similarly, we achieve the same objective 486

by configuring an analogous past_key_values, 487

which regulates the length of key-value pairs trans- 488

mitted to the forward computation. As for S-LoRA, 489
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Table 2: Time-to-first-token performance comparison
of MobiLoRA under different scenarios (unit: second).

PEFT vLLM S-LoRA MobiLoRA

C
on

ve
rs

at
io

n S1 0.554 0.533 0.282 0.183 (↓35.1%~67.0%)
S2 0.561 0.486 0.241 0.158 (↓34.4%~71.8%)
S3 0.678 0.959 0.399 0.197 (↓50.6%~79.5%)
S4 0.685 0.543 0.586 0.397 (↓26.9%~42.0%)
S5 0.586 0.959 0.648 0.480 (↓18.1%~49.9%)

W
ri

tin
g

S1 0.520 0.767 0.281 0.174 (↓38.1%~77.3%)
S2 0.517 0.863 0.255 0.168 (↓34.1%~80.5%)
S3 0.563 0.764 0.327 0.207 (↓36.7%~72.9%)
S4 0.542 0.902 0.627 0.342 (↓36.9%~62.1%)
S5 0.586 1.147 0.745 0.392 (↓33.1%~65.8%)

we set the size of TokenToKVPool to align with the490

budget, since the S-LoRA is already integrated in491

SGLang.492

4.2 End-to-End Performance493

Time-to-first-token performance. We compare494

MobiLoRA with the four aforementioned baselines.495

We choose TTFT as the main performance metric,496

it’s crucial for assessing the quality of service in497

LLM deployment. As shown in Tab. 2, each row498

presents the TTFT results obtained by different499

serving systems under the corresponding simulated500

scenarios. Remarkably, MobiLoRA reduces the501

TTFT by at most 80.5% over the state-of-the-art502

baselines. The best-performed baseline is S-LoRA503

since it is a dedicated serving system for LoRA-504

based LLMs. S-LoRA efficiently serves multi-505

ple adapters simultaneously by loading them into506

memory, demonstrating superior performance com-507

pared to PEFT and vLLM. We adopted S-LoRA’s508

adapter loading strategy. However, MobiLoRA sur-509

passes S-LoRA in performance due to our abil-510

ity to reuse the KV cache for each LoRA adapter.511

MobiLoRA only prefills the new input of the new512

conversation. Moreover, MobiLoRA can load and513

reuse the KV cache of different LoRA adapters at514

the cost of minimal memory usage.515

We then analyze the performance of Mo-516

biLoRA under different scenarios. We can see from517

Tab. 2 that MobiLoRA performs better in harsh sce-518

narios such as S1 in both conversation and writing519

tasks. This demonstrates the effectiveness of Mo-520

biLoRA in achieving efficient LoRA-based LLM521

inference on resource-constrained devices, open-522

ing up new possibilities for NLP tasks on these523

devices. The quantity of LoRa adapters also im-524

pacts the end-to-end performance. Comparing the525

performance of S1 against S4 in both tasks, we526
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Figure 5: BERTScore performance comparison of with
and without similarity-aware delta encoding.
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Figure 6: The TTFT of MobiLoRA and its variants on
synthesized workload traces with different scenarios.

observe a significant TTFT degradation from S1 527

to S4. This is because having more adapters can 528

potentially reduce the KV cache hit ratio, which 529

in turn may limit the opportunity to reuse the KV 530

cache, resulting in slower performance. 531

Generation quality. We then evaluate the 532

generation quality performance with and without 533

similarity-aware delta encoding we proposed in 534

§3.2. We use BERTScore as the main metric and 535

compare it for writing tasks and conversation tasks 536

in Fig. 5. We can see from the figure that on both 537

tasks, our similarity-aware delta encoding has lit- 538

tle influence on the generation accuracy. We owe 539

this merit to our layer-wise delta encoding, which 540

selects an optimized compression error bound for 541

different layers of the KV cache, balancing the 542

tradeoff between generation quality and efficiency. 543

In summary, results show a similar pattern to the 544

synthetic workloads. This means the strong perfor- 545

mance MobiLoRA holds for real-world workloads. 546

4.3 Ablation Study 547

We conducted a breakdown of the two design 548

modules and performed ablation experiments. As 549

shown in Fig.6, MobiLoRA no-diff-compress 550

means disabling the similarity-aware KV delta en- 551
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coding in §3.2, and MobiLoRA-LRU means to552

disable the context-aware KV cache management553

in §3.3. We can see from the figure that our ap-554

proach outperforms the two variants, especially in555

scenarios S3 and S5, indicating that with ample556

memory, our method achieves higher memory uti-557

lization, allowing for the storage of more LoRA558

KV caches.559

In extreme memory environments, the propor-560

tion of evictions triggered by our method is higher.561

Therefore, in scenarios S1 and S4, our performance562

surpasses that of the naive LRU eviction mecha-563

nism. The primary reason is that our mechanism564

can perceive the context of both the application565

layer and the system layer, enabling joint manage-566

ment of the KV cache under extreme memory con-567

ditions.568

5 Related Work569

Optimize LoRA-based LLM Serving System.570

There have been many efforts to accelerate the571

multi-tenant LoRA serving system. dLoRA (Wu572

et al., 2024a) use advanced dynamical batching573

mechanisms for efficient serving merged and un-574

merged inference. Punica (Chen et al., 2024)575

presents a new CUDA kernel design that allows576

batching of GPU operations for different LoRA577

models in a GPU claster. S-LoRA proposes a578

new tensor parallelism strategy to decoupled the579

base model and LoRA adapters, and also includ-580

ing unified paging strategy to manage KV caches581

and adapter weights uniformly. Caraserve (Li582

et al., 2024) employs a CPU-assisted approach583

and a rank-aware scheduling algorithm to miti-584

gate the cold-start overhead and meet SLOs respec-585

tively. Pets (Zhou et al., 2022) presents a unified586

framework for serving multiple LoRA adapters eff-587

ciently.588

KV Cache Management and Compression.589

KV cache is widely used for accelerating autore-590

gressive decoding nature. Existing work explores591

various approaches to reducing the storage require-592

ments of KV caches from multiple perspectives.593

The first one is reducing the generation of KV594

caches. SGLang and vLLM exploit sharing pre-595

fixes to reach that. The second one is reducing596

the size of KV caches. CacheGen reduces the597

bandwidth needed to transmit KV caches by com-598

pressing them into compact bitstreams. CacheAt-599

tention (Gao et al., 2024a) manages KV caches600

through hierarchical KV cache placement and an601

overlapping mechanism designed to reduce the 602

overhead associated with this process. Parrot (Lin 603

et al., 2024) 604

Serving LLM on Device. Mllm (Yi et al., 605

2023b) proposes to utilize on-device NPU for re- 606

ducing prefill latency and energy consumption first. 607

EdgeMoE (Yi et al., 2023a), an on-device MoE en- 608

gine with treats memory as a cache for experts that 609

are held in external storage. LLM in a flash (Al- 610

izadeh et al., 2024) leverages the model sparsity 611

to accelerate the on-device LLM inference. Pow- 612

erInfer (Song et al., 2023) exploits the cold-hot 613

neurons’ distribution to design a GPU-CPU hybrid 614

inference engine. LLMCad (Xu et al., 2023) de- 615

liver LLM’s scaling ability to mobile devices by 616

redesigning speculative generation pipeline. LL- 617

MaaS (Cai et al., 2024) proposed a new paradigm 618

of mobile AI which decoupled the memory man- 619

agement of application and LLM contexts. 620

6 Conclusion 621

In this paper, we present MobiLoRA, an efficient 622

inference framework for LoRA-based LLMs on 623

mobile devices. MobiLoRA takes advantage of the 624

semantic- and system-level contexts to accelerate 625

the inference. The core of MobiLoRA is a new 626

attention mechanism referred to as CtxAttention, 627

which stores the semantic- and system-level con- 628

texts for KV cache management optimization. 629

With CtxAttention, MobiLoRA proposes a 630

similarity-aware delta KV encoding to facilitate 631

the efficient storage and reuse of the KV cache for 632

LoRA-based LLMs. Moreover, MobiLoRA lever- 633

ages the system-level contexts, i.e., the application 634

state of who sends the LLM request, to optimize the 635

KV cache management. Evaluation with real-world 636

mobile usage traces shows the effectiveness of our 637

design. Compared with existing LoRA serving 638

frameworks, MobiLoRA achieves 18.1%~80.5% 639

latency improvement. 640

7 Limitations 641

This paper presents an initial trial towards the opti- 642

mization of the KV cache for LoRA-based LLMs, 643

aiming to facilitate more natural language process- 644

ing tasks on mobile devices. We recognize that this 645

initial trial has its limitations and risks. 646

First, although the design of MobiLoRA is not 647

bound to specific foundation models and adapters, 648

our current implementation does not involve more 649

different architectures of foundation models and 650

8



other distributions of LoRA adapters. Second, our651

proof-of-concept implementation focuses on a spe-652

cific mobile device platform with only GPU accel-653

eration. Instead, commercial-off-the-shelf mobile654

devices have variant hardware configurations, such655

as some mobile platforms relying on the domain-656

specific accelerator such as neural processing unit657

(NPU). We identify the cooperative inference be-658

tween multiple accelerators is able to further accel-659

erate the LoRA inference as a promising problem660

for future exploration.661
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