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Rapid development is essential for IoT (Internet of Things) application developers to obtain first-mover ad-

vantages and reduce the development cost. In this article, we present TinyLink, a holistic system for rapid

development of IoT applications. The key idea of TinyLink is to use a top-down approach for designing both

the hardware and the software of IoT applications. Developers write the application code in a C-like language

to specify the key logic of their applications, without dealing with the details of the specific hardware com-

ponents. Taking the application code as input, TinyLink automatically generates the hardware configuration

as well as the binary program executable on the target hardware platform. TinyLink provides unified APIs

for applications to interact with the underlying hardware components. We implement TinyLink and evaluate

its performance using real-world IoT applications. Results show that (1) TinyLink achieves rapid develop-

ment of IoT applications, reducing 52.58% of lines of code on average compared with traditional approaches;

(2) TinyLink searches a much larger design space and thus can generate a superior solution for the hardware

configuration, compared with the state-of-the-art approach; (3) TinyLink incurs acceptable overhead in terms

of execution time and program memory.
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1 INTRODUCTION

Over the past years, the Internet of Things (IoT) [19] has evolved from a vague concept to practical
systems connecting lots of network devices, and it is considered as a promising future computing
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technology [12]. IoT platforms are tightly coupled to their applications [22, 27, 40]. This coupling
makes it difficult for general-purpose platforms to address application-specific needs [21].

The lack of general-purpose IoT platforms causes difficulties in developing IoT applications.
Developers have to know all aspects of an IoT system, including the requirements of target appli-
cation as well as the hardware components and the software components. They typically follow
a bottom-up approach from building an appropriate hardware platform (consisting of appropri-
ate microcontrollers and different sensors) to writing application software that can run on the
platform [23, 42, 44]. This bottom-up approach is time-consuming [30]: an individual application
developer has to learn and build a hardware platform first, then construct the software libraries,
and finally write the application code; an application developer in a team has to wait for others to
complete the hardware platform and the software system before he/she can write application code.

In this article, we advocate a top-down approach: an application developer can first write the
application code as if there exists a virtual platform which possesses all hardware components in
the market. An intelligent system takes the application code as input and will (1) automatically
generate concrete configurations for hardware platforms (e.g., which components to select and
how they connect); and (2) translate the hardware-independent application code into hardware-
dependent code which can directly execute on the generated hardware platform. This top-down
approach greatly accelerates the developing process. While our previous position paper suggested
the promise of this top-down approach [25], it fell short of answering several practical challenges,
which we address in this article.

First, how to select the most appropriate hardware components in order to satisfy application
requirements? User-desired functionalities can be inferred from the application code. How to se-
lect the hardware components accomplishing all the desired functionalities? Considering different
costs and different characteristics of these hardware components, how to formulate this hardware
selection problem and which optimization criterion should be chosen?

Second, how to embrace a diverse set of commercially available hardware components in a com-
patible manner? Significant hardware innovation has occurred recently, particularly in the Maker
domain around Arduino and Raspberry Pi platforms. There has been a move from fixed platforms
toward platforms with high extensibility. For example, mainboards already offer many interfaces,
e.g., port and physical pin. Shield (a.k.a. expansion board) offers more flexibility for peripherals to
interface with the mainboard. How to consider complex connections between peripherals and the
mainboard?

Finally, how to express application logic in a hardware-independent manner and translate it into
the executable code for the corresponding hardware configuration? Abstracting a unified program-
ming environment is difficult as different platforms support different environments, e.g., Arduino
supports the AVR programming environment, and Raspberry Pi supports the ARM-based Linux
programming environment. How to implement a holistic system so that application developers
need not care about low-level details such as device drivers, cross-compilers, and so on?

In order to address the above challenges, we present TinyLink, a holistic system for rapid de-
velopment of IoT applications. With TinyLink, developers can specify application logic in a C-like
language, without dealing with the details of the underlying hardware, drivers, compilers, and so
forth. Taking the application code as input, TinyLink automatically generates hardware configu-
rations as well as the hardware-dependent code executable on the target hardware platform.

TinyLink includes a hardware database containing commercial-off-the-shelf (COTS) hardware
components as well as their characteristics (e.g., costs, interfaces, required voltage). Based on the
hardware database, TinyLink explicitly formulates possible compositions as hardware constraints.
TinyLink carefully considers possible connections between ports and physical pins provided by
mainboards and shields and thus can embrace a diverse set of COTS hardware components.
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TinyLink also extracts the user constraints from the code, e.g., the invocation of a TinyLink API
TL_GPS.read()means that one GPS sensor is required. TinyLink explores the design space by con-
sidering both hardware constraints and user constraints. Currently, TinyLink adopts an optimiza-
tion criterion to minimize the cost. Other criteria (e.g., extensibility, energy, and performance) can
also be adopted. TinyLink seeks the best solution by solving the optimization problem and outputs
the hardware configuration (consisting of the set of hardware components and their connections).

TinyLink reuses easy-to-use Arduino-like environment for application programming. TinyLink
provides unified APIs for the application to interface with the underlying hardware components.
The APIs are fully implemented on four mainboards, including Arduino UNO, Raspberry Pi 2,
BeagleBone Black, and LinkIt ONE. To minimize the implementation overhead, TinyLink heavily
reuses existing libraries. Glue code is implemented in TinyLink, serving a binding from the APIs
to existing libraries TinyLink builds upon.

TinyLink is a holistic system: besides generating hardware configurations and providing easy-
to-use APIs, TinyLink also includes (1) Cloud-based compiling architecture; (2) Web-based appli-
cation programming interface; and (3) commonly used benchmarks for system validation.

We evaluate TinyLink using real-world IoT applications. Results show that (1) TinyLink achieves
rapid development of IoT applications, reducing 52.58% of lines of code on average compared with
existing programming approaches for Arduino UNO, Raspberry Pi 2, BeagleBone Black, and LinkIt
ONE; (2) TinyLink searches a much larger design space and thus can generate a superior solution
for the hardware configuration, compared with CodeFirst [24]; and (3) TinyLink incurs acceptable
overhead in terms of execution time and program memory. Moreover, we present four concrete
case studies and one user study that illustrate how TinyLink can help us quickly develop real-world
IoT applications.

The contributions of this work are summarized as below:

—We present TinyLink, a holistic system for developing IoT applications. TinyLink transforms
the IoT development process from bottom-up to top-down, enabling rapid development of
IoT applications. TinyLink abstracts away the IoT hardware so that developers can focus
on the application logic without experience in embedded systems.

—We formulate the hardware selection problem as an optimization problem. We carefully
consider hardware constraints and user constraints so that a wide range of COTS hardware
components can be used in a compatible manner and application requirements can be sat-
isfied.

—We design unified APIs for applications to interface with COTS hardware components. We
implement the APIs on four mainstream platforms so that application developers need not
deal with low-level hardware details.

—We carefully evaluate TinyLink using benchmarks, four concrete case studies, and one user
study. Results show that TinyLink achieves rapid development of IoT applications and gen-
erates optimal solutions for hardware configuration while incurring acceptable overhead.

The rest of this article is structured as follows. Section 2 introduces how to use TinyLink. Sec-
tion 3 shows TinyLink’s design overview. Section 4 and Section 5 describe the hardware generation
system and the software generation system, respectively. Section 6 shows the evaluation results.
Section 7 discusses some important open issues. Section 8 describes the related work, and finally,
Section 9 concludes this article and gives future directions of work.

2 TINYLINK USAGE

In this section, we describe how to use TinyLink for IoT application development. We first present
an application example using TinyLink, followed by describing its details.
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Fig. 1. Workflow overview of TinyLink.

Fig. 2. Application code example.

2.1 Example

In this example, we present the development of an IoT application using TinyLink for monitoring
the moisture and ambient light of a houseplant. As shown in Figure 1, a developer needs to perform
the following five steps:

1© Write the application code. Developers can directly write the application code in a
hardware-independent way. For example, Figure 2 shows our implementation. First, the setup()
function is executed for the initialization of the required modules (i.e., the WiFi module). Second,
the loop() function is continuously executed to read the sensor data and upload the data via the
WiFi module. Applications can directly invoke functions of the modules via TinyLink built-in APIs
which are prefixed with “TL_.”

ACM Transactions on Sensor Networks, Vol. 17, No. 1, Article 2. Publication date: September 2020.
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Fig. 3. Hardware connection for the example.

2© Upload the code to the cloud. The TinyLink system runs at the cloud. Taking the ap-
plication code as input, TinyLink executes multiple tasks, and the results will be returned to the
developer.

3© Get the outputs. The developer gets the following two outputs: (1) the hardware configu-
ration which includes the selected hardware components as well as their connections. TinyLink
visualizes the result so that developers can easily follow the configuration to assemble the hard-
ware platform. For example, Figure 3 shows the visualization of the hardware configuration which
includes an Arduino UNO, a Base Shield V1.3, a Grove Light Sensor, a Soil Moisture Analog Sensor,
and an ESP8266 ESP01 WiFi module; (2) the hardware-dependent code. TinyLink transforms the
hardware-independent application code into hardware-dependent binary code which can directly
run on the target hardware platform.

4© Assemble the IoT platform. Given the visualization of the hardware configuration (e.g.,
Figure 3), developers can easily assemble the selected components into an IoT platform.

5© Burn the code to the platform. The developer can then burn the hardware-dependent
code onto the hardware platform to execute the desired functionalities.

It is worth noting that this top-down development approach differs drastically from the tradi-
tional bottom-up approaches and can greatly accelerate the entire IoT developing process. With
TinyLink, developers can easily express the application logic without dealing with hardware de-
tails. Also, the hardware engineering efforts can greatly be reduced since TinyLink automatically
handles complex hardware compatibility issues.

2.2 TinyLink Programming

We consider ease of programming as a primary design goal of TinyLink. TinyLink borrows the
program structure from Arduino programming. This is because (1) it is fairly simple and (2) it is
already very familiar to a large community. As shown in Figure 2, the application code built on
top of TinyLink includes two primary functions.
setup(). The setup() function runs only once when the program starts. Developers can put

the initialization of the required components or other one-shot tasks in this function. As shown in
Figure 2, the program first initiates the WiFi module (line 3), and configures it by setting the SSID
and the password of the AP (line 4). Developers can also specify additional features of hardware
components, e.g., the measurement range (line 5) and the ADC resolution (line 6) of a light sensor.
loop(). The loop() function will be continuously executed after the setup() function. The

loop() function usually includes some periodical tasks. As shown in Figure 2, the program reads
data from the light sensor and the soil moisture sensor. Then the program invokes the function
upload() to upload the data to the cloud server. Finally, the program invokes a built-in API to
sleep for 1 minute (line 13) and then the loop restarts again.

It is worth noting that TinyLink also supports other programming styles, such as the event-
driven model of TinyOS, and the protothread programming style of Contiki OS. TinyLink
can support different programming styles by further encapsulating TinyLink APIs which are
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implemented in various TinyLink libraries. The current implementation already supports event-
driven programming through asynchronous calls and callback functions.

TinyLink provides a keyword, REQUIRE, for explicitly specifying a required module. In the fol-
lowing, we give two examples.

(1) REQUIRE Light;—This statement specifies that the IoT platform must include the light
sensor even if the light sensor is not used in the application code; and

(2) REQUIRE DBGPrint;—This statement specifies that the IoT platform must include an ad-
ditional UART interface for printing out debugging information.

TinyLink provides many hardware-independent APIs for developers. The details will be de-
scribed in Section 5.2.

3 TINYLINK DESIGN OVERVIEW

We describe TinyLink’s design goals and the corresponding approaches we have adopted.

—Rapid IoT application development. To achieve this goal, TinyLink (1) adopts the top-

down development model for IoT applications; and (2) generates the hardware configuration
and the binary program at the cloud so that there is no installation of local developing
environments.

—Ease of programming. To achieve this goal, TinyLink borrows the simple program struc-
ture of Arduino programming. In addition, TinyLink provides hardware-independent APIs
to facilitate application programming.

—Little hardware engineering efforts. TinyLink incorporates a hardware database with
clear specifications of hardware components and their characteristics. The generation of the
hardware configuration is formulated as an optimization problem with constraints inferred
from the application code. By solving the optimization problem, TinyLink automatically

generates the best hardware configuration.
—High extensibility to accommodate many hardware components. TinyLink is de-

signed to embrace a set of COTS hardware components. Unlike CodeFirst [24], we do not
assume a fixed mainboard. In addition, we need to consider complex connections between
interfaces on hardware components. Finally, we need to carefully consider the implemen-
tations of libraries so that developers can easily interface with the underlying hardware
components.

Figure 4 depicts the TinyLink system architecture, including the hardware generation system
(Section 4) and the software generation system (Section 5). The application code serves as the input
of TinyLink and is passed to both generation systems:

—Inside the hardware generation system, the hardware configuration generator automatically
generates the hardware configuration by analyzing the application code and considering the
information from the hardware database. The hardware generation system also generates
the hardware configuration header file.

—Inside the software generation system, the cross compiler takes three sources as inputs,
namely, the application code, the generated hardware configuration header file, and li-
braries. Finally, the binary program for the target platform is generated.

4 HARDWARE GENERATION SYSTEM

In this section, we describe the TinyLink hardware generation system from two aspects: the hard-
ware database (Section 4.1) and the hardware configuration generator (Section 4.2).
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Fig. 4. TinyLink system architecture.

4.1 Hardware Database

TinyLink includes a hardware database containing COTS hardware components and their char-
acteristics. This hardware database serves as the key information source to automatically gen-
erate hardware configurations. We look for popular and widely used COTS hardware compo-
nents for embedded and IoT development and find that many platforms consist of three kinds of
components:

—Mainboard. A mainboard contains key electronic components of a system, e.g., MCU and
memory. It also provides interfaces (in the forms of physical pin or port) for other periph-
erals.

—Shield. A shield can be plugged onto the mainboard to transform or extend the types or num-
ber of interfaces. Also, shields with built-in modules will consume interfaces and provide
functionalities, e.g., WiFi Shield V2.0 consumes UART pins and provides WiFi functional-
ity. Moreover, some shields containing MCUs can provide extra interfaces, e.g., GrovePi+
[7] has an ATmega328 MCU and provides three extra Analog pins for Raspberry Pi.

—Peripherals. A peripheral can connect to a mainboard or a shield via interfaces. Peripherals
include input devices (e.g., sensors), output devices (e.g., display modules), and input/output
devices (e.g., communication modules).

Correspondingly, our database includes three tables. Table 1 shows a simplified table which
contains the following key fields: ID, cost, provided interface, consumed interface, provided MCU
pin, consumed MCU pin, and functionality. For LinkIt One, it (1) costs 59 dollars; (2) has three
Analog pins and two UART pins (the example only shows two types); (4) has one UART port; (5) has
exposed three Analog MCU pins and two UART MCU pins; (6) occupies none of the interfaces
and MCU pins; and (7) has functionalities of GPRS, GPS, SD, WiFi, and BLE integrated into the
mainboard.

As shown in Figure 5, physical pins and ports are two major kinds of interfaces on IoT
components. In addition, MCU or System on Chip (SoC) usually contains several to dozens of
general-purpose input/output pins (GPIO), which we call MCU pins. The physical pins and ports
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Table 1. Database Example

Fig. 5. Physical pins and ports.

Fig. 6. Internal connections of UART pins, UART ports, and UART MCU pins on LinkIt One.

are wirings to MCU pins. For example, in Figure 6, the UART pins (i.e., RX and TX) and the UART
port are wirings to the UART MCU pins (i.e., URXD and UTXD).

4.2 Hardware Configuration Generator

IoT has a diverse set of applications for different scenarios. Although some applications can use a
powerful mainboard with abundant inferences, others cannot. Due to form factors, cost, and other
factors, the most appropriate hardware component may be resource-constrained. The generation
process intends to address the problem of how to assemble COTS hardware components in an
effective and compatible way.

We first describe the conditions for a valid/compatible hardware configuration. We then formu-
late the hardware selection problem, i.e., which hardware components should be selected to form
the IoT platform. Finally, we generate the hardware connections and visualize the final results for
the developers.

4.2.1 Valid Hardware Configuration. In TinyLink, it is important to clearly define a valid hard-
ware configuration before we can search for a valid hardware configuration. We first define a valid
connection between two hardware components via interfaces. A valid connection should satisfy
the following conditions: (1) the two interfaces must be in the same form (i.e., physical pin or port);
(2) the two interfaces must be type compatible. Usually, it means that the two interfaces have the
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Table 2. Implemented Constraints in TinyLink

same type, e.g., UART. In practice, we also consider the special case in which an interface can have
two or more alternative types; (3) the interfaces must be power compatible, i.e., the supplied volt-
age level of an interface is compatible with the working voltage level of the other interface, and
the drawn current should be smaller than the maximal allowable current of both interfaces.

In a valid hardware configuration, all connections must be valid. To simplify the configuration,
we first assume that there is only one mainboard. In addition, it should satisfy the following con-
ditions: (1) the configuration must satisfy all the application requirements; (2) a connection is a
one-to-one mapping. In other words, an interface cannot connect to multiple interfaces of another
component since it will cause signal interference. It also means that the provided number of in-
terfaces must be no smaller than the consumed number of interfaces with respect to a particular
interface type (e.g., UART); (3) only one connection can be established on interfaces which are
wiring to the same MCU pin. As shown in Figure 6, either the UART port or the UART pins can
be connected at a time. A detailed example will be described in Section 4.2.4.

Table 2 summarizes the conditions we have considered in the current implementation of
TinyLink.

There are several important points worth emphasizing. First, TinyLink has a much larger
design space than previous approaches like CodeFirst [24]. For example, CodeFirst only allows
connections between ports while TinyLink allows connections between pins which are common
cases for many peripherals such as Soil Moisture Analog Sensor and ESP8266 WiFi module.
Second, the conditions we have considered for a valid configuration are never exhaustive [37].
It is possible that a valid hardware configuration generated by TinyLink could not work due
to conditions we have not considered, e.g., an incompatible baud rate of UART. Nevertheless,
TinyLink is valuable since it helps developers avoid numerous invalid hardware configurations.
In addition, TinyLink can be easily extended to accommodate additional conditions in the future.

4.2.2 Problem Formulation. We first introduce the following notations.

—M, S, P . We use them to denote the sets of mainboard, shield, and peripheral, respectively.
In the database example in Table 1, M = {1, 2, 3, 4}, S = {5, 6}, P = {7, 8, 9, 10, 11, 12}.

—U , F . We use F to denote the set of all functionalities. We use U to denote the set of user-
required functionalities. U can be inferred from the application code. U is included in F .

—i , di , ci , f
u
i

. We use di to denote the indicator variable. di = 1 indicates that hardware com-
ponent i is present in the final IoT platform, where i ∈ {M ∪ S ∪ P }, while di = 0 indicates
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that it is not. ci is the cost of the component i . f u
i

is the Boolean value (i.e., 1 and 0) indicating
whether the component i has the required functionality of u ∈ U or not.

—t ,T . We use t to denote the type of an interface, where t is in the interface type set T =
{UART, Analog, SPI, I2C, PWM, USB, Digital}.

—NO+i (t ),NO−i (t ). NO+i (t ) represents the number of interfaces with the type t in the form of
port provided by the component i , while NO−i (t ) represents the number of interfaces with
the type t in the form of port consumed by the component i .

—NI+i (t ),NI−i (t ). Similar to the notations for ports, where NI represents the number of phys-
ical pins.

—NM+i (t ),NM−i (t ). Similar to the notations for ports and physical pins, whereNM represents
the number of MCU pins.

With the above definitions, the hardware selection problem can be formulated as follows with
the optimization criterion being the total cost.

Find the values of di (∀i ∈ {M ∪ S ∪ P })

min
∑

i ∈{M∪S∪P }
dici

s.t.

{
User Constraints
Hardware Constraints

.

(1)

Component i is selected iff di = 1. We call a set of i’s as a feasible set if they satisfy all the con-
straints. In the following, we describe how we carefully set up constraints and conduct validations
to ensure that feasible solutions are valid ones.

4.2.3 User Constraint. TinyLink first preprocesses the application code and infers the user re-
quirement U . User constraints are automatically generated:∑

i ∈{M∪S∪P }
f u
i di ≥ 1, ∀u ∈ U . (2)

Example. We revisit the example shown in Figure 2. Also assume the hardware database is
shown in Table 1. TinyLink automatically infersU asU = {Light, Soil_Moisture, WiFi}. Thus three
user constraints are generated:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

d7 ≥ 1 (Light)

d8 + d9 ≥ 1 (Soil_Moisture)

d2 + d5 + d11 + d12 ≥ 1 (WiFi).

4.2.4 Hardware Constraint. While the user constraints are fairly simple, the hardware con-
straints are much more complicated. Due to the space limitation, we describe three important
constraints.

(1) Port Constraint. TinyLink allows the use of shields to extend the capability of the main-
board. As such, for a particular type, the number of ports provided by the mainboard plus the num-
ber of ports provided by the shield, minus the number of ports consumed by the shield, should be
no smaller than the number of ports consumed by the peripherals. The port constraint for TinyLink
is shown below:∑

i ∈M

NO+i (t )di +
∑
i ∈S

(NO+i (t )di − NO−i (t )di ) ≥
∑
i ∈P

NO−i (t )di ,∀t ∈ T . (3)
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(2) Physical Pin Constraint. TinyLink allows connections via physical pins. Similar to the port
constraint, the physical pin constraint for TinyLink is shown below:∑

i ∈M

NI+i (t )di +
∑
i ∈S

(NI+i (t )di − NI−i (t )di ) ≥
∑
i ∈P

NI−i (t )di , ∀t ∈ T . (4)

(3) MCU Pin Constraint. Nevertheless, the actual number of usable ports and physical pins is
not as easy as calculating their sum. This is because some ports and physical pins are mapped to
the same MCU pins, which means that they actually share the same interface and will interfere
with each other if they are used simultaneously. For example, in Figure 6, the UART physical pin
RX in the pin header and the pin inside the UART port (i.e., RX pin of the UART port) are wiring

to the same MCU pin URXD on MT2502A, the SoC of LinkIt One. It is the same case for the UART
physical pin TX and the TX pin in the UART port.

As a result, we need to constrain the number of usable interfaces at the MCU pin level. The total
number of consumed MCU pins should be no larger than the total number of provided ones. The
MCU pin constraint is generated as follows:∑

i ∈M

NM+i (t )di +
∑
i ∈S

(NM+i (t )di − NM−i (t )di ) ≥
∑
i ∈P

NM−i (t )di , ∀t ∈ T . (5)

Example. We revisit the example in Figure 2. TinyLink generates the following constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0d1 + 0d2 + 2d3 + 0d4 + (1d5 + 2d6 − 0d5 − 0d6) ≥
d7 + 0d8 + d9 + 0d10 + 0d11 + 0d12 (Port Cons. for Analog),

0d1 + d2 + d3 + 0d4 + (0d5 + d6 − 0d5 − 0d6) ≥
0d7 + 0d8 + 0d9 + 0d10 + 0d11 + d12 (Port Cons. for UART),

6d1 + 3d2 + 0d3 + 0d4 + (6d5 + 6d6 − 6d5 − 6d6) ≥
0d7 + d8 + 0d9 + 0d10 + 0d11 + 0d12 (PHY Pin Cons. for Analog),

2d1 + 2d2 + 0d3 + 2d4 + (2d5 + 2d6 − 2d5 − 2d6) ≥
0d7 + 0d8 + 0d9 + 0d10 + 2d11 + 0d12 (PHY Pin Cons. for UART),

6d1 + 3d2 + 4d3 + 0d4 + (0d5 + 0d6 − 0d5 − 0d6) ≥
2d7 + d8 + 2d9 + 0d10 + 0d11 + 0d12 (MCU Pin Cons. for Analog),

2d1 + 2d2 + 2d3 + 2d4 + (0d5 + 0d6 − 2d5 − 0d6) ≥
0d7 + 0d8 + 0d9 + 0d10 + 2d11 + 2d12 (MCU Pin Cons. for UART).

Together with the mainboard constraint (i.e., d1 + d2 + d3 + d4 = 1) and user constraints in Sec-
tion 4.2.3, we can get 19 feasible sets.

Comparison with CodeFirst. The CodeFirst [24] (1) does not allow the use of shield; (2) does
not allow connections via pins; and (3) does not consider the MCU pin constraints.

With the following port constraints,∑
i ∈M

NO+i (t )di ≥
∑
i ∈P

NO−i (t )di , ∀t ∈ T ,

CodeFirst generates the following concrete constraints for the example shown in Figure 2:{
2d3 ≥ d7 + 0d8 + d9 + 0d10 + 0d11 + 0d12 (Port Cons. for Analog),
d3 ≥ 0d7 + 0d8 + 0d9 + 0d10 + 0d11 + d12 (Port Cons. for UART).

Assuming a fixed mainboard of BetaBlocks, CodeFirst gets only one feasible solution {3, 7, 9, 12},
which is included in the set of TinyLink’s feasible solutions.

Figure 7 shows the solution space of TinyLink and CodeFirst. Under the three constraints we
have described, the set of all CodeFirst feasible solutions is a subset of TinyLink feasible solu-
tions. The search space of TinyLink is much larger since it allows complex connections between
components.
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Fig. 7. Solution space comparison between TinyLink and CodeFirst.

4.2.5 Generation Process. The generation of hardware configuration consists of three main
steps.

First, we solve the optimization problem described above and look for the most appropriate
hardware components. In real implementations, we use a complete set of constraints listed in
Table 2. We further consider the compatibility constraint. The compatibility constraints mainly
consist of two categories:

(1) Physical compatibility constraints. TinyLink forbids physically incompatible hardware
components to be connected, e.g., Base Shield V1.3 and Raspberry Pi 2 are not physically compat-
ible due to their different form factors.

(2) Functional compatibility constraints. TinyLink also forbids functional incompatible
hardware components to be connected with each other. For example, a Grove Temperature and
Humidity Sensor Pro frequently fails to be read on a LinkIt One mainboard due to the lack of
peripheral driver though their connection via ports is valid.

Both the physical and functional compatibility constraints can be formulated as follows:

di + dj ≤ 1, if device i and device j are incompatible with each other, (6)

which means the final generated hardware configuration should use at most one device.
Example. We revisit the example in Figure 2. TinyLink generates the following constraints:{

d4 + d6 ≤ 1 (physical compatibility constraints),
d2 + d10 ≤ 1 (functional compatibility constraints).

The first inequality indicates d4 (Raspberry Pi 2 mainboard) and d6 (Base Shield V1.3) should not
be selected at the same time because they are physically incompatible. The second inequality in-
dicates d2 (LinkIt One mainboard) and d10 (Grove Temperature and Humidity Sensor Pro) should
not be selected simultaneously in the final hardware configuration because they are functionally
incompatible.

The compatibility constraints, together with the user and hardware constraints in Sections 4.2.3
and 4.2.4, constitute all the linear constraints in the optimization problem. Since the optimization
problem is a classical integer linear programming problem, we utilize the open-source ILP solver
lp_solve [18] to solve it. The lp_solve solver employs a branch-and-bounding algorithm to solve
this optimization problem efficiently.

Second, TinyLink will show developers how to assemble these hardware components after
generating the hardware component list. The connection is generated by correctly allocating

ACM Transactions on Sensor Networks, Vol. 17, No. 1, Article 2. Publication date: September 2020.



TinyLink: A Holistic System for Rapid Development of IoT Applications 2:13

Fig. 8. The binary tree example of all hardware configurations.

interfaces on the mainboard and the shields to hardware components. Given the selected main-
board and shields, TinyLink calculates all the available interfaces, and then allocates them by pri-
ority. First, TinyLink allocates the pin interfaces occupied by built-in modules on mainboards and
shields, e.g., UART pins on WiFi Shield V2.0. Afterward, TinyLink allocates non-occupied ports and
non-occupied physical pins to peripherals, because ports usually occupy consecutive MCU pins
shared with physical pins. Based on the allocation, TinyLink utilizes OpenCV to generate a simple
visualization for the generated hardware configuration, e.g., Figure 3 visualizes the recommended
hardware configuration for the application code shown in Figure 2.

Finally, TinyLink employs an additional validation procedure to verify that the recommended
hardware configuration is a valid one, according to definitions described in Section 4.2.1. If the
hardware configuration happens to be invalid due to invalid connections (which is rare from our
experience), TinyLink invokes the ILP solver again to seek a different solution which is valid by
our definition. In the future, we would like to borrow the crowdsourcing idea for IoT application
development. If the current developer selects a hardware configuration that was used and reported
successfully by others, the developer has a high chance of getting the correct one.

It is worth noting that TinyLink also provides additional valid hardware configurations by im-
plementing the recommendation system. Developers may have various demands besides prices,
e.g., more non-occupied interfaces for further extensions, higher CPU clock speed, larger flash and
RAM, and so forth. Therefore, TinyLink lists all valid hardware configurations with the features
mentioned above (e.g., number of non-occupied interfaces, CPU clock speed). TinyLink first builds
a binary tree to enumerate all of them. For example, we intend to sample ambient light using four
hardware components: Arduino UNO, LinkIt One, Base Shield, and Grove Light Sensor. Figure 8
shows the binary tree where each node is an indicator of the existence of a hardware component
and each leaf node denotes a hardware configuration. Then TinyLink uses the pre-order traversal
and adopts a branch-and-cut method [35] to accelerate the process. TinyLink checks whether a
node is valid using the aforementioned ILP solver and cuts the branch if the node’s hardware con-
figuration is invalid (e.g., nodes 2 and 18 in Figure 8). Finally, TinyLink outputs all valid hardware
configurations ordered by features.

5 SOFTWARE GENERATION SYSTEM

This section describes how to generate a hardware-dependent binary program from the application
code. Section 5.1 describes the generation of a hardware configuration header file. Section 5.2 and
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Fig. 9. Hardware configuration header file.

Section 5.3 present TinyLink API design and the library implementations in detail. Section 5.4
describes the cross compilers, followed by Section 5.5 which discusses interactive debugging in
TinyLink.

5.1 Hardware Configuration Header File

From the perspective of developers, the application code is hardware-independent. However, from
the perspective of cross-compilers, the code should be hardware-dependent, e.g., link to the correct
libraries corresponding to the underlying hardware. Therefore, we translate the hardware config-
uration information (see Figure 3) to the hardware configuration header file in C language (see
Figure 9).

The hardware configuration header file is composed of three sections. The first section includes
other important header files (line 1), such as the device ID header file. The second section describes
which hardware components are used via macros (lines 3–6). In each line, an abstract component
(e.g., MAINBOARD in line 3) is defined by a specific hardware component (e.g., ARDUINO_UNO
in line 3), which relates the hardware-independent functionality to the hardware-dependent
components. The third section describes the hardware connection information (lines 8–11).
This hardware configuration header file is generated by the hardware generation system and is
essential for compiling the application code for the target platform.

5.2 API Design

Unlike traditional IoT programming, programming with TinyLink is hardware-independent, i.e.,
the developers are unaware of the underlying hardware components. APIs play an important role
in relating high-level semantics to low-level details. TinyLink provides generalized APIs to facili-
tate application programming.

In order to provide developers with widely used APIs, we investigate 116 projects from popu-
lar IoT online forums [2, 9] and websites [3, 4]. We extract 225 commonly used APIs from them
and group them into 39 categories by the functionalities they provide. As shown in Figure 10,
we list the 20 most-used categories and their call frequency, where the most popular one is the
LED, accounting for about 23%. In the current implementation of TinyLink, we encapsulate and
implement 24 categories, covering 89.78% of the total APIs we have investigated. The remaining
10.22% (i.e., uncovered) of the APIs are left unimplemented, including those controlling DIY de-
vices, transmitting and receiving infrared signals, and so forth. Given a limited development time,
we have decided to implement the most important and commonly used APIs while skipping those
infrequently invoked ones.
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Fig. 10. API call frequency summarized from real-world projects.

We say that TinyLink supports a project if all the APIs used in this project have corresponding
TinyLink APIs. 67.24% of the projects are supported by TinyLink and can be ported to TinyLink
with little modifications. The remaining 32.76% of the projects have at least one uncovered API
and thus cannot be easily ported to TinyLink in the current stage. We plan to implement more
TinyLink APIs to support more IoT applications in the future.

How to exchange messages over unreliable networks in an energy-efficient manner is an impor-
tant issue in IoT development. Message Queue Telemetry Transport (MQTT) protocol is a light-
weight messaging protocol [13] which builds on top of the TCP protocol. It has been adopted as
a primary protocol for IoT communications by major IoT cloud providers (e.g., IBM, Amazon, and
Microsoft). To support this widely used protocol in IoT development, we provide MQTT APIs in
TinyLink. Once a TCP connection is established, a TinyLink node with MQTT can connect to a
broker (i.e., MQTT client at the server side) upon it, and then publish/subscribe their information.
We have tested our TinyLink MQTT APIs on IBM Bluemix and China Mobile IoT Open Platform.
All four mainboards, i.e., Arduino UNO, LinkIt One, Raspberry Pi 2, and BeagleBone Black, can
connect to MQTT brokers of the two cloud platforms using the ESP8266 WiFi module and the
Grove UART WiFi module, as well as the built-in WiFi module of LinkIt One and the built-in
Ethernet modules of Raspberry Pi 2 and BeagleBone Black.

In addition, we provide basic debugging APIs for developers. They can write REQUIRE DBGPrint
to indicate that they require printing out debugging information. In this case, the TinyLink hard-
ware system will occupy an additional serial interface on the mainboard. All debugging informa-
tion will be transmitted via this serial interface. Developers can use TL_Debug.print() to print
out their own debugging information.

5.3 Library Implementation

Libraries are the actual implementations of TinyLink APIs. We are facing practical implementa-
tion challenges since each library implementation requires developing efforts and the number of
required implementations may grow rapidly with an increasing number of hardware components.
We address these challenges in the following ways.
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Fig. 11. Glue code example of implementing an LED function.

First, we implement the most commonly used libraries according to our experience so that we
can benefit a greater number of users given limited development time. With the increasing use
of TinyLink, we could get more feedbacks about which libraries should be implemented with a
higher priority.

Second, we try to reuse existing libraries and only add glue code to implement TinyLink APIs.
Writing glue code includes abstracting the unified input/output interfaces, replacing the hardware-
dependent code with macros, adding conditional syntax in the API header file and so on.

Figure 11 illustrates how we implement the TinyLink API TL_LED.turnOn() by reusing libraries
on four mainboards. For these four mainboards, we use the function pinMode() to configure LED
pin behavior and use digitalWrite() to turn the LED on. These APIs are implemented differently
for different platforms. On Arduino and LinkIt platforms (Arduino programming environment and
VM on Linux), they can be easily implemented using the system library. On Raspberry Pi and
BeagleBone platforms (Debian-based Linux operation systems), they can be implemented using
third-party libraries, e.g., wiringPi [26] and wiringBone [17]. The implementation overhead for
glue code is relatively small when we carefully choose the existing libraries.

Finally, we will allow for crowdsourcing the library implementations by application developers.
We will release TinyLink libraries to be open source online, and in the long term, we hope that
more and more IoT developers will join us to implement the useful libraries which can be shared
among other developers. As an initial effort, we provide component templates written in C++ for
developers to implement TinyLink libraries for a new hardware component. We roughly divide
TinyLink libraries into four categories, system libraries, communication libraries, sensor libraries,
and actuator libraries. We provide developers with a category menu to help them locate which
component templates they can use. For example, to implement a library for a simple sensor, a
developer can use the sensor template we have developed, inherit the Sensor class, and implement
abstract interfaces like virtual int _read()=0. If a developer intends to implement libraries
for a new mainboard, we provide basic templates in system libraries such as serial template, timer
template, and so forth.

Furthermore, if the new library has corresponding new hardware to be added to the TinyLink
system, the extending process is a little more complicated. Besides implementing the software
APIs, the detailed hardware information such as the price, and the number of pins and ports are
also required to be added into the hardware database.

It is also worth noting that it is possible for TinyLink to generate a hardware configuration
which misses some software implementations. To address this issue, we provide two options for the
developers: (1) provide the best IoT hardware configuration and the application developers have
to implement the required library code; and (2) provide the suboptimal solution with complete
software implementations.

5.4 Cross-Compiler

The preprocessed code needs to be cross-compiled on the cloud to the binary code for the target
platform. There are two key problems that TinyLink needs to address: (1) which libraries to link and
(2) which cross-compiler to use. TinyLink relies on a header file TL_Config.h which encodes the
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Fig. 12. Including libraries using header files.

Table 3. Cross-Compilers of Four Mainboards

hardware configuration. The type of mainboards defined in TL_Config.h determines the specific
cross-compiler.

Figure 12 shows how hardware-independent application code and hardware-dependent li-
braries are linked. TinyLink libraries include two headers files, TL_Library.h and <mainboard>_
<peripheral>.h, for transforming hardware-independent APIs to hardware-dependent APIs. For
the example shown in Figure 12, TL_Library.h will include TL_Config.h to include necessary
function modules, e.g., ESP8266_ESP01, which again includes Arduino_ESP8266.h according to
the hardware configuration defined in TL_Config.h.

We list cross-compilers for four mainboards in Table 3. The Arduino UNO based on AVR AT-
mega utilizes avr-gcc and avr-g++ compilers. LinkIt One, which is based on ARM7, leverages arm-
none-eabi-gcc and arm-none-eabi-g++ compilers. The Raspberry Pi 2 and BeagleBone Black, with
ARM Cortex-A7 and Cortex-A8, respectively, both use arm-linux-gnueabihf-gcc and arm-linux-
gnueabihf-g++ compilers.

5.5 Interactive Debugging

TinyLink supports interactive debugging if the native system supports it. In the current stage,
TinyLink supports interactive debugging using gdb for the Debian systems on Raspberry Pi and
BeagleBone Black. If gdb debugging is required by writing REQUIRE GDB, TinyLink will compile the
application code to include necessary debugging information. In addition, developers are provided
with the source code of the whole project, including high-level application code as well as low-
level hardware-dependent library code. Based on these, developers can log into the platform and
debug the source code with functions provided by gdb, e.g., breakpoints, watchpoints, and stepped
execution.
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Fig. 13. Number of components in TinyLink database.

5.6 IDE Integration

TinyLink is a holistic system that includes a cloud-based compiling architecture and Web-based
application programming interfaces encapsulated as RESTful APIs. With these, TinyLink enables
developers to program in a lightweight local development environment. Currently, TinyLink pro-
vides two kinds of integrations: one with local IDE and another with cloud IDE. For the former
one, TinyLink supplies a customized extension of the Visual Studio (VS) Code, a free, open-source
local IDE developed by Microsoft. Developers can complete the development process within the
VS code and even interactively debug in it. For the latter one, TinyLink supplies developers with
a cloud IDE powered by Theia [10] and several customized plugins which facilitate all TinyLink
functions. Developers only need a browser and can start programming.

6 EVALUATION

In this section, we present the evaluation of TinyLink. Section 6.1 presents the experiment setup.
Section 6.2 shows the overall evaluations in terms of ease of programming, feasible solutions, and
overhead. We study four real-world cases using both TinyLink and CodeFirst [24] in Section 6.3.
Section 6.4 shows a user study of 28 undergraduate students.

6.1 Experiment Setup

Hardware Component. In Figure 13, we list the number of components in our hardware data-
base grouped by functionalities. There are 4 mainboards, 10 shields, and more than 100 peripherals
recorded in our database. The four mainboards include Arduino UNO (UNO for short), LinkIt ONE
(ONE for short), Raspberry Pi 2 (RP2 for short), and BeagleBone Black (BBB for short). The char-
acteristics (e.g., resolution and sensing range) of these components are also stored in our database.

Benchmark. We use six frequently used benchmarks according to Figure 10 for evaluation,
which are (1) LED Write (LED for short), which turns on an LED; (2) WiFi GET (WiFi for short),
which sends an HTTP GET request to a website in the local area network and retrieves the re-
sponse; (3) File Write & Read (File for short), which writes data to a file on a storage module and
then reads the data; (4) Temperature Read (Temp for short), which reads temperature data from a
sensor; (5) Humidity Read (Humi for short), similar to Temp; and (6) Light Read (Light for short),
similar to Temp.

Case Study. We use four real-world case studies, an indoor smart houseplant node described
in Section 2, an air quality monitoring node, two Blink-to-Radio LoRa [15] nodes, and a voice
controlled LED lamp node. More details are presented in Section 6.3.

User Study. Participants are required to implement 11 pre-defined cases that can be divided
into four difficulty levels. Level one includes cases 1–2, which include LED blinking and printing
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Fig. 14. Percentage of reduced lines of code.

Fig. 15. Number of solutions and the lowest cost.

to serial. Level two includes cases 3–5, which include sensing temperature, writing to SD card,
and getting data from Internet via WiFi. Level three includes cases 6–8, which include posting
different indoor environment data to the TinyLink cloud, and making LED blink if the data exceeds
thresholds. Level four includes cases 9–11, which include the smart houseplant case and the air
quality cases in both local storage and cloud mode. More details are presented in Section 6.4.

6.2 Overall Evaluation

6.2.1 Ease of Programming. First, we compare lines of code needed to implement the bench-
marks between using TinyLink APIs and using original APIs (e.g., APIs provided by hardware
manufacturers). We implement the six benchmarks on four mainboards and report the reduced
lines of code. In Figure 14, we can see that using TinyLink reduces the lines of code by 14.29%–
94.67%. The average percentage of reduced lines of code on four mainboards is 52.58%. In partic-
ular, for implementing the WiFi GET benchmark, using TinyLink APIs reduces more than 94.40%
of lines of code on all mainboards. This is due to the simple API design and a large amount of glue
code implementations for the WiFi library.

Second, we compare the lines of code between TinyLink and CodeFirst [24]. CodeFirst uses
27 lines of code to implement an example of reading data from a temperature sensor, displaying
data on an LCD screen, and transmitting data via Bluetooth. This is the only example which has
the source code in CodeFirst. In TinyLink, developers can implement an application with the same
functionalities only using 15 lines of code.

6.2.2 Feasible Solution. TinyLink can generate many feasible solutions after exploring the
hardware database and choose the best one according to the given optimization criterion (e.g.,
the total cost). A larger searching space will provide more opportunities to generate more feasible
solutions, as well as a better solution. We evaluate the feasible solutions for six small benchmarks
and four case studies, and compare the results with CodeFirst [24]. Figure 15 shows the results.
For each benchmark and case study, we count the number of feasible solutions, as well as the
lowest cost in the set of feasible solutions. We can observe that TinyLink generates far more fea-
sible solutions than CodeFirst and much lower total cost for each benchmark and case study. In
the LED write and the File Write & Read benchmarks, CodeFirst fails to generate any feasible
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Table 4. Relative Execution Overhead

Table 5. Program Space Overhead (Bytes)

solutions, because it only uses ports which are usually not supported by peripherals with the stor-
age functionality.

6.2.3 Overhead. The implementations of glue code on existing libraries introduce overhead to
the generated IoT applications. In the following, we evaluate the execution overhead, program
space overhead, and memory space overhead.

Execution Overhead. Most implementations of unified TinyLink APIs are the encapsulations
of existing ones, and the overhead comes from the glue code. We take experiments on the execu-
tion time of API calls in our benchmarks. Table 4 shows the relative execution overhead of using
TinyLink APIs compared with using original APIs. Considering the magnitude of the execution
overhead is μs (e.g., 0.75 μs for the LED benchmark on UNO), the overhead is acceptable. We can
see high overhead on some platforms. This is because the native APIs execute very fast on these
platforms. On the other hand, the wrapping overhead of TinyLink is roughly constant: it is mainly
incurred by the function calling overhead, e.g., pushing the function arguments to the stack or
other calling conventions. For example, the execution time of the native humidity read and light
read API on the BBB platform are 525.4 μs and 23.49 μs, respectively. Hence the relative overhead
percentage of light read API is much higher than that of humidity read. We can also see very small
overhead because the wrapping overhead can be negligible for some optimized implementations. For
example, the wrapping of TL_Serial.write() on UNO is implemented as a C++ macro instead
of the typical method of function calls. Hence, TL_Serial.write() exhibits almost no overhead
on UNO.

Program Space Overhead. The program space overhead is proportional to the amount of im-
plemented glue code. Due to different MCU architectures, we use different methods to measure
the program space. For the UNO with an AVR MCU, the program space is calculated by the sum
of .text and .data segments. For the other three with ARM MCU, the program space is the size
of their cross-compiled binary programs.

Table 5 shows the program space overhead. The program space overhead of UNO and ONE is no
more than 3 KB and 31 KB, respectively. Considering their program flashes are 32 KB and 16 MB,
respectively, the overhead is small and acceptable. The reasons why the overhead of BBB and RP2
is much larger is that they run on a Debian Linux system and their binary programs are in ELF
format. But considering their program flashes are at least 4 GB, the overhead within 100 KB is
negligible.
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Table 6. Memory Space Overhead (Bytes)

Table 7. Hardware Configurations of Smart Houseplant Nodes

Memory Space Overhead. The measured memory space overhead is composed of the over-
head from static memory overhead (i.e., .text, .data.) and runtime memory overhead (i.e., stack
and heap). Table 6 shows that the memory space overhead is small for UNO and is negligible for
the other three. For UNO, the overhead of all benchmarks is within 171 B, 8.35% of its RAM size
(i.e., 2 KB). For ONE, the overhead of all benchmarks is within 21 KB, 1.03% of its RAM size (i.e.,
2 MB). For BBB and RP2, the overhead of benchmarks is within 100 KB, which is negligible since
their RAM is 512 MB and 1 GB, respectively.

6.3 Case Study

Smart Houseplant Node. This case has been described in Section 2. Figure 2 shows the appli-
cation code. Under the criterion of the lowest cost, the best hardware configurations for both
TinyLink and CodeFirst [24] are shown in Table 7. In the TinyLink solution, the Base Shield V1.3
is selected, because it can provide ports (required by the Grove Light Sensor) which UNO does
not contain. The fixed platform of CodeFirst, BetaBlocks, contains ports so that it does not need
shields. It is obvious that the cost of TinyLink’s solution is much lower than the cost of CodeFirst’s
solution. This is because BetaBlocks’s characteristic of only using ports limits the searching space
for feasible solutions. The assembled node of TinyLink is shown in Figure 16(a).

Air Quality Node. Mosaic is a mobile sensor network system for city-scale sensing [20]. The
requirement of a mosaic node is measuring PM2.5, PM10, position, temperature, and humidity
every 30 seconds. Then the sampled data are uploaded to a cloud server via GPRS. In addition,
output log data are stored in the SD card for further debugging and developing.

We intend to build such nodes using both TinyLink and CodeFirst. The generated hardware
configurations are shown in Table 8. Mosaic Node V1 is the original node used in [20], which is very
expensive. TinyLink generates a hardware configuration that reduces about 41% of the total cost,
due to the built-in components on LinkIt One. In Table 9, we can observe that TinyLink achieves
all functionalities provided by Mosaic Node V1. CodeFirst cannot generate a feasible solution since
there are no suitable interfaces for storage modules. The assembled node of TinyLink is shown in
Figure 16(b).

Blink-to-Radio LoRa Nodes. TinyLink enables developers to build IoT applications which
have interactions across nodes such as the well-known Blink-To-Radio in TinyOS [34] by imple-
menting multiple pieces of application code. In this simple case, we intend to send one-shot blink
commands periodically from the sender to the receiver via LoRa [15], which supports long-range
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Fig. 16. Assembled TinyLink nodes for four real-world case studies.

Table 8. Hardware Configurations of Air Quality Nodes

Table 9. Functionalities of Implemented Air Quality Nodes
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Table 10. Hardware Configurations of Blink-to-Radio LoRa Nodes

Table 11. Hardware Configurations of Voice

Controlled LED Lamp Nodes

and low-power communications and is promoted as an infrastructure solution for IoT. The com-
mon requirement of the sender and the receiver is transmitting messages via LoRa and the receiver
requires LED blinking in addition.

Table 10 shows the generated hardware configurations of both the sender and the receiver for
TinyLink and Code-First, respectively. In TinyLink, the sender and the receiver both use Dragino
LoRa Shields. However, the receiver uses an external LED instead of the built-in LED on Arduino
UNO. This is because the LoRa Shield, which uses the SPI interface, occupies the MCU pin of the
built-in LED. On the other hand, CodeFirst still cannot generate a feasible solution due to a lack
of suitable interfaces. The assembled nodes of TinyLink are shown in Figure 16(c).

Voice Controlled LED Lamp Node. TinyLink is suitable for building smart home applications.
We intend to control home appliances (e.g., LED lamps) via smart devices which take voice com-
mands as input. We have implemented a voice controlled LED lamp node via TinyLink. The source
code only contains 51 lines of code. The requirements extracted from the code are recording the
user’s voice periodically using a sampling rate of 16 kHz, recognizing voice commands (e.g., “Light
On” and “Light Off”), printing commands on an LCD screen, and controlling the corresponding
home appliance.

Table 11 lists the generated hardware configurations. The hardware configuration for TinyLink
contains a USB desktop microphone directly attached to a USB port on a Raspberry Pi 2, a Grove
relay module, and a Grove LCD RGB backlight module which are attached to ports on a shield,
GrovePi+. Figure 16(d) shows the assembled node. There are no solutions for CodeFirst because
its mainboard lacks interfaces for voice recording modules.

The library implementations for the recording API and the voice recognition API are based on
PocketSphinx, a CMU’s speaker-independent continuous speech recognition engine [31].

6.4 User Study

To evaluate TinyLink’s performance, we conduct a user study on 28 undergraduate students who
attend the course of computer networks. They are required to implement 11 pre-defined cases de-
scribed in Section 6.1. We divide the students into 14 groups and provide each group with necessary
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Fig. 17. Case development time on average of 14 groups.

Fig. 18. Detailed development time of 111 cases.

mainboards, shields, and peripherals. We also give them a carefully designed user guide which con-
tains three illustrative TinyLink examples; a serial example using UNO, a Blink-to-Radio example
using ONE, and a sensing example using RP2, as well as complete TinyLink API references. Be-
fore the experiment, they fill out a small questionnaire about their experiences in programming.
Results show that three groups are familiar with IoT programming, three groups have little expe-
rience, and eight groups have never touched this area. And three groups are very familiar with
C-like languages, ten groups are quite familiar, while one group has little experience.

To obtain their development time, we record the timestamps of calling Web-based RESTful APIs
and the logs of TinyLink cloud. Two groups implement all 11 cases during the 2 1

2 hour experiment,
and all groups implement about 6.9 cases on average. Figure 17 shows the case development time
on average of each group, which is about 23.86 minutes per case. This includes the complete
development process from writing the code to watching the result of assembled nodes. Figure 18
shows the detailed development time of each case by all groups. From the first two easy cases,
we can observe that students can quickly start developing with TinyLink. And from the last six
difficult cases, their development time drops as they become familiar with TinyLink. In order to
take an in-depth look, we show the timeline of group 10 who completes all 11 cases in Figure 19.
It is interesting to discover that the two members both implement the first five cases to be familiar
with TinyLink and try to cooperate for the rest of the cases. Their case development time on
average is 17.56 minutes and 13.03 minutes, respectively. These results show that TinyLink can
help developers quickly build IoT applications and can greatly accelerate the process.

7 DISCUSSION

In this section, we discuss several important open issues.
Optimization Criteria. Currently, TinyLink’s optimization criterion is to minimize the cost.

However, other optimization criteria (e.g., extensibility, energy consumption) can also be adopted.
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Fig. 19. Breakdown of development time of each member in group 10.

For extensibility, it is possible to define an extensibility metric as the number of unoccupied inter-
faces which could be used in the future. For energy consumption, however, it is a non-trivial task
to estimate accurately for a particular platform during design-time given the application code. One
possible approach for optimizing energy consumption is described as follows. First, we should es-
timate the execution time and energy consumption of each TinyLink API for different components
on different platforms by well-designed benchmarks (or values reported in datasheets). Second, we
should carefully analyze the application code for information such as which TinyLink APIs it has
invoked. Using the above information, we can roughly estimate the energy consumption of the
entire code for different components on different platforms. Finally, we can look for the platform
with minimum energy consumption by setting energy consumption as an optimization criterion
and other factors like the cost as constraints.

TinyLink’s Extensibility. Due to TinyLink’s high-level abstraction, the application code is
hardware-independent. TinyLink can incorporate other MCUs by including their features into
the hardware database as well as glue code for the new platforms. Therefore, other MCUs (e.g.,
MSP430) can also be supported by TinyLink in the future. TinyLink uses COTS hardware com-
ponents and deals with the issues on how to assemble them in a compatible way. In the cur-
rent stage, we think that TinyLink is primarily targeting for rapid prototyping. We think that
TinyLink’s approach for rapid prototyping can have important implications and guidance to the
final production. TinyLink mainly focuses on the fast prototyping of IoT applications, especially
for non-experts. The current implementation of TinyLink considers COTS IoT components in-
stead of circuit-level components such as wiring, resistor, and capacity. Circuit-level development
of IoT hardware (e.g., using the wiring, resistors, and capacities) is well studied in the Electronic
Design Automation (EDA) community. Although TinyLink focuses on prototyping component-
based IoT applications, we can also support industrial production by using the System-in-Package
(SiP) technique which treats the wiring, resistor, and capacity as standalone packages and provide
prototyping constraints between these packages. These constraints can be incorporated into the
TinyLink optimization problem.

Code Migration. For developers who are familiar with embedded systems (especially the hard-
ware), code transformation is indeed a good feature for porting their existing code from one
platform to another. For other developers, we believe that TinyLink is a good approach since it
significantly reduces the developing efforts. With TinyLink abstraction, the code is hardware-
independent and is also easy to migrate between platforms with the cross-compilation on the
cloud. Moreover, TinyLink reuses the Arduino programming style heavily to prevent a steep learn-
ing curve. Since code transformation is another direction of work, we will consider it as possible
future work of TinyLink.
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8 RELATED WORK

TinyLink borrows heavily from three large areas of prior work: hardware platform design, hard-
ware/software co-design, and IoT rapid development. Each of these topics has made key implica-
tions which TinyLink incorporates into its design and structure.

Hardware Platform Design. With the development of MEMS technology, we have seen signif-
icant advances in the hardware industry. Early in 2003, the well-known sensor network platform,
Telos, was released along with the TinyOS operating system by researchers at UC Berkeley [34].

The most important considerations for a sensor network platform are energy efficiency and
small form factor. The design of such a dedicated, small platform is difficult and requires expert
knowledge. For example, Dutta et al. present a building block approach [21] to hardware platform
design based on a decade of collective experience, arriving at an architecture in which general-
purpose modules that incorporate commonly used functionality are integrated with application-
specific carriers that satisfy the unique sensing, power supply, and mechanical constraints of an
application.

Andersen et al. present the design of a new hardware and software platform [14] by bringing
together Mobile, Wearable, Maker, and Wireless Sensor Network technologies to achieve a high
degree of synergy and energy efficiency.

Sutton et al. present a design methodology [39] for adaptive event-triggered acoustic sensing
systems, with careful consideration for adaptability, responsiveness, and energy efficiency. All the
work aims to design an energy-efficient hardware platform with good system performance. How-
ever, expert knowledge on the hardware experience and embedded software have created a barrier
for upper-layer application development. TinyLink intends to remove this barrier by incorporating
hardware knowledge into our system design.

Recent years have also witnessed significant innovations in the Maker domain around Ar-
duino [1] and Raspberry Pi [8]. These platforms are characterized by powerful processors with
rich interfaces. These development trends have important implications for our designs: (1) the
COTS hardware components and their compositions have already enabled a wide range of inno-
vative applications; (2) we need to carefully consider the complex connections among hardware
components and the API implementations on different platforms.

Hardware and Software Co-design. Hardware/software co-design approaches use synthesis
strategies to generate efficient hardware and software partitions.

The most relevant to our work is Platform Based Design (PBD) [32]. The goal of PBD is to select
and compose a subset of available components (i.e., the configuration), from the design space of
possible platform configurations. A good and implementable configuration satisfies the system
constraints as well as all component-imposed assumptions. PBD is a meet-in-the-middle process
which maps an abstracted top layer description to a more detailed lower layer implementation as
well as building a platform by defining the library that allows performance estimation.

Peter et al. propose a component-based description language CoDeL [36] that allows system
designers to express components as reusable building blocks of the system with parameterizable
models, properties, and interconnectivity. The automatic mapping from the higher layer to the
lower layer is the process of exploration of complex design spaces, which is frequently fostered by
satisfiability (SAT) [16] solvers or Integer Linear Programming (ILP).

Similar to PBD, TinyLink also adopts an automatic mapping process from the application logic
to a concrete hardware configuration. While PBD addresses a general problem, TinyLink addresses
specific and practical challenges such as hardware-independent APIs, compatibility among COTS
hardware components, and implementations of glue code on different platforms.
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IoT Rapid Development. The rapid development of IoT systems has attracted much research
attention from both industrial and academic communities.

Shayne Hodge proposes a general idea [29], which is to build an architecture like that of a
modern web application. At a very high level in this model, the IoT hardware sends data over a
network (or the Internet) to the backend software for storage and processing. The user interface
is built as a web application, which allows it to be viewed on a broad range of devices. The details
on how to build the IoT hardware, however, are not given.

The Matrix project [6] was launched on Kickstarter in 2015. The platform contains up to 15 sen-
sors so that users only need to create IoT Apps, without caring about the hardware. However, the
platform is fixed; it is not flexible to create customized IoT Apps.

IOTIFY [5] is the virtualization engine for the IoT to help build IoT applications. IOTIFY re-
duces the complexity of dealing with hardware and large networks by virtualizing IoT endpoints
in the cloud. Different from IOTIFY, TinyLink generates real hardware components and application
software.

.NET Gadgeteer [43] is an integrated platform from Microsoft to support developing with cus-
tomized components. Developers can quickly build devices with the help of Gadgeteer modules,
.NET Micro Framework, and 3D design tools. Wio Link [11] is a similar approach which builds
upon the Wio Link board. TinyLink focuses on how to rapidly develop IoT applications using a
variety of COTS components, instead of using customized components.

Flicker [28] is a rapid prototyping system for batteryless devices, TinyLink focuses not only on
batteryless ones but also on other general IoT hardware.

LibAS [41] is a cross-platform framework that enables rapid development of mobile acoustic
sensing Apps. Its framework hides a large amount of engineering efforts from developers by pro-
viding platform control components which encapsulate the underlying details. Developers can
only focus on implementing essential sensing algorithms. Different from LibAS, TinyLink focuses
on development in IoT scenarios and faces unique challenges like the hardware configuration
generation.

Another synthesizing system, EDG [38], suffers from high synthesis time. For example, it takes
187.88 minutes at most to synthesis under a database with 73 devices. The ILP formulation for
hardware and user constraints of TinyLink exhibits a much more efficient synthesis performance.

A recent approach is the code-first design to prototype wearable devices [24]. The hardware
configuration would be generated from the analysis of the application code, because one software
module is directly mapped to one hardware component and hardware dependencies can be de-
termined by analyzing software dependencies. However, it assumes a fixed mainboard, limiting
its capability to embrace a diverse set of COTS components. Moreover, another software-oriented
synthesizing system, Esperanto [33], also only supports two kinds of IoT devices, which limits its
usage.

The design of TinyLink is much more complicated since it supports different mainboards and
provides pin-level abstractions with careful consideration for shields. TinyLink also includes soft-
ware libraries to facilitate upper layer application programming.

9 CONCLUSION

In this article, we present TinyLink, a holistic system for rapid development of IoT applications.
TinyLink uses a top-down approach for both hardware and software designs. Developers only
need to specify key application logic with TinyLink APIs, without dealing with the underlying
hardware. TinyLink takes their code as input, and automatically generates the hardware con-
figuration and the binary program executable on the target platform. We implement TinyLink
and evaluate its performance using benchmarks, four real-world case studies, and one user study.
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Results show that TinyLink achieves rapid development of IoT applications, reducing 52.58% of
lines of code on average for implementations while incurring acceptable overhead.

The future work of TinyLink includes two directions. First, we will further extend the supported
hardware components of TinyLink. Second, we will extend TinyLink to other optimization goals,
e.g., energy, performance, and extensibility.
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