
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021 5893

Automatic Generation of IoT Device
Platforms With AutoLink

Borui Li , Graduate Student Member, IEEE, and Wei Dong , Member, IEEE

Abstract—With the development of the Internet-of-Things
(IoT) industry, developers are no longer content with just proto-
typing a valid system but eager to create a mature IoT system that
explores low power consumption or high extensibility instead.
In this article, we present AutoLink, an automatic generation
system of IoT device platforms. Users may write AutoLink
metaprogram with an expressive syntax to specify their diverse
requirements (e.g., battery lifetime, interface extensibility, execu-
tion time, and cost) of the generated IoT device platform. Taking
the metaprogram as an input, AutoLink automatically transforms
it into corresponding optimization problems and generates the
optimal hardware configuration that meets user requirements
best. Toward this, AutoLink also offers a cross-platform, duty
cycle-aware power model and a time model to estimate the life-
time and execution period of an IoT system. We implement
AutoLink and evaluate its performance using real-world IoT
applications. Results show that AutoLink generates the optimal
hardware configuration that meets diverse user requirements.
Moreover, AutoLink achieves superior power estimation accu-
racy of IoT device platforms compared with the state-of-the-art
approach.

Index Terms—Energy, Internet of Things (IoT), rapid
development.

I. INTRODUCTION

THE PAST several years have witnessed the rapid devel-
opment of Internet of Things (IoT) technologies. IDC

forecasts that the number of IoT devices will reach 41.6 bil-
lion by 2025 [1]. Nevertheless, it is reported by Garter that
IoT adoption is off to a slow start and 75% of IoT projects will
take up to twice as long as planned [2]. Among several road-
blocks, such as security and budget, the technical complexity
of application development is voted as the primary barrier for
IoT adoption, according to a recent survey by Microsoft [3].

An IoT application runs on top of the IoT device platform.
An IoT device platform is a specially designed embedded
system that typically consists of a microcontroller unit (MCU),
sensors, communication modules, and many other peripherals.

Manuscript received March 4, 2020; revised May 21, 2020 and July 12,
2020; accepted October 16, 2020. Date of publication October 22, 2020;
date of current version March 24, 2021. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2019YFB1600700; in part by the National Science Foundation of China
under Grant 61772465; and in part by the Zhejiang Provincial Natural Science
Foundation for Distinguished Young Scholars under Grant LR19F020001.
(Corresponding author: Wei Dong.)

The authors are with the College of Computer Science and Alibaba-
Zhejiang University Joint Institute of Frontier Technologies, Zhejiang
University, Hangzhou 310000, China (e-mail: borui.li@zju.edu.cn; dongw@
zju.edu.cn).

Digital Object Identifier 10.1109/JIOT.2020.3033130

To date, there lacks a general-purpose IoT device platform
since the device platforms are usually tightly coupled to their
applications [4], [5].

It is challenging to build an appropriate IoT device plat-
form for a specific application, especially for nonexperts in the
embedded systems domain. First, the number of device plat-
forms and components has significantly increased recently. For
example, besides resource-constrained MCUs like the ATMega
series, there exist resource-abundant MCUs like the ones on
Raspberry Pi. There are also a large number of peripherals
with different characteristics. It is thus difficult to make appro-
priate design choices from such an ample space of hardware
components. Second, application developers may have diverse
requirements on the IoT device platform. Low cost is preferred
in some applications, while in some other implementations,
low energy consumption is preferred.

The above difficulties could be tackled by an automatic gen-
eration system of IoT devices. Such a system may have a
database containing key metrics of various hardware compo-
nents. Taking the application code as well as the requirements
as input, the system can automatically generate the optimal
hardware configuration of the IoT device, i.e., the list of
hardware components as well as their connections.

Initial efforts have been spent on the design of such an
automatic generation system. Embedded design generation
(EDG) approach [6] exploits high-level abstractions to lower
the threshold of embedded design. TinyLink [7] advocates a
top-down approach to make users focus on application logic
other than hardware selections. The existing work cannot meet
diverse application requirements. For example, EDG only gen-
erates valid hardware configuration while TinyLink generates
the cost-optimal solution.

In this work, we aim to design an automatic IoT
device generation system to meet various application require-
ments, including cost, lifetime, and extensibility. Nevertheless,
designing such a system faces nontrivial challenges.

First, how to design an expressive language to allow users to
express different requirements. For example, the user intends
to build a smart houseplant monitoring system powered by
the battery and requires that our system could provide an IoT
device platform with maximum battery lifetime.

Second, how to incorporate lifetime into consideration.
Different from cost, the accurate estimation of lifetime
depends on not only the selected hardware components but
also the input user code. Our system should consider not
only hardware power profiles but also fine-grained code
characteristics.

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5262-2483
https://orcid.org/0000-0003-0498-1494

5894 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

We propose AutoLink, an automatic IoT device platform
generation system, to address the above challenges. With
Autolink, users can specify their requirements of the gen-
erated device platforms, such as lifetime, cost or real-time
constraints in AutoLink syntax. Take the metaprogram as
input, AutoLink automatically expresses the objectives and
constraints in a mathematical manner and transforms user
requirements to an optimization problem. By solving the
problem, AutoLink generates the most appropriate device
platform. AutoLink mainly targets on the nonexperts to
help them develop an optimized IoT application efficiently.
Moreover, AutoLink also provides an interactive visualizer,
which allows professional IoT developers to gain insight
into the performance of their application code and the hard-
ware they selected in terms of power, extensibility, etc.,
which could be a guidance to improve their software/hardware
design.

We implement AutoLink and perform extensive evalu-
ations using benchmarks and real-world IoT applications.
Results show that: 1) AutoLink automatically generates the
most appropriate hardware configuration that meets various
user requirements and 2) the power estimation accuracy of
AutoLink exceeds 97%, which is superior compared with the
state-of-the-art Amulet [8] and the time estimation accuracy
exceeds 90% in the worst cases.

The contributions of this article are summarized as follows.
1) We present AutoLink, an automatic IoT device platform

generation system considering multiple criteria, includ-
ing cost, lifetime, and extensibility. With AutoLink,
developers can express diverse application requirements
so the resultant IoT device can meet application-specific
needs.

2) We formulate the device platform generation problem
as an optimization problem. Then, propose a time and
a duty cycle-aware power estimation approach that both
consider the impact of different device combinations and
the dramatic contrast between idle and active power,
which is considerable due to the intermittent wake up
of typical IoT applications.

3) We implement the AutoLink system and carefully eval-
uated the performance of the generated device plat-
form with real-world cases. Moreover, we evaluated the
time and power estimating accuracy with benchmarks.
Results show that AutoLink generates the optimized
solution for the IoT device platform, meanwhile satisfy-
ing various user requirements.

The remainder of this article is structured as follows.
Section II introduces the related works about IoT systems syn-
thesis and energy modeling. Section III introduces the usage of
the AutoLink system. Section IV presents AutoLink’s formula-
tion of the optimization problem. The essential compounds of
AutoLink and the dynamic constraint generation system are
detailed in Sections V and VI. In Section VII, we describe
the implementation details and show the evaluation results
of our device platform generation system. Section VIII dis-
cusses some important open issues, and finally, Section IX
concludes this article and describes the future directions of
AutoLink.

II. RELATED WORK

During the development of IoT applications, the require-
ment of adequate software and hardware knowledge raises
the threshold for interested amateur developers and stalls
the widespread IoT deployment. To alleviate the problem,
researchers in both industrial and academic communities dedi-
cate themselves to the computer-assisted IoT system synthesis
topic.

TinyLink [7], CodeFirst [9], and EDG [6] aim to make
hardware synthesis more accessible to nonexperts. TinyLink
formulates the synthesis problem as an integer linear program-
ming (ILP) problem and enables developers to explore a more
extensive hardware prototype space. CodeFirst uses the depen-
dencies between software libraries and hardware components
to infer necessary hardware components. EDG approach uses
block diagrams represent software control logic and hardware
component, formulates the synthesis problem as a satisfiability
problem, and leverages satisfiability modulo theories (SMT)
solver, Z3 [10], to solve it.

Outside the area of IoT, a tool that has been developed and
adopted by DEC company for configuring computer systems
is XCON, which is based on an expert system research project
named R1 [11].

Different from the aforementioned approaches, we not only
focus on synthesizing a valid platform but also a well-
performed one from the perspective of power consumption,
timeliness and extensibility.

Furthermore, many techniques have been proposed to eval-
uate the performance of embedded or IoT systems. From the
perspective of energy modeling and estimating, Quanto [12]
and Amulet [8] present their solutions. Quanto introduces a
fine-grained energy measurement framework of TinyOS. It
instruments the hardware drivers to log system-wide power
states and global energy consumption for every power state
transition. Then, Quanto obtains the power draw of each state
with a series of logs. Amulet wearable platform proposes an
energy model to estimate the power consumption of the system
for developers to get a complete view of how their application
works.

Different from Quanto, AutoLink neither requires modifica-
tion on hardware drivers nor runs the source code to obtain the
power information. Comparing with Amulet, our work obtains
a more fine-grained model by considering the impact of power
fluctuation when different hardware plugs and co-works with
each other.

III. AUTOLINK USAGE

Before describing the details of AutoLink, we first present
its usage. AutoLink builds on top of TinyLink [7], a rapid
prototyping system for IoT applications. We choose TinyLink
mostly because it adopts the Arduino programming style that
is popular in IoT prototyping and the entire system is publicly
ready-to-use.

Note that AutoLink can also be implemented on other hard-
ware synthesis systems, as long as they own a mathematical
formulation of the synthesis problem, such as EDG [6] and
CodeFirst [9].

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

LI AND DONG: AUTOMATIC GENERATION OF IoT DEVICE PLATFORMS WITH AutoLink 5895

Fig. 1. Application code using TinyLink Language.

Fig. 1 shows a code example of an IoT application
developed with TinyLink for monitoring the temperature and
ambient light of a houseplant. Users implement the applica-
tion logic in two main functions. The setup() function is
used to initialize the Bluetooth component while loop() is
used to sample the sensor data and upload the data to the
default server. TinyLink can generate the cost-optimal hard-
ware configuration considering user constraints and hardware
constraints.

We notice that in many practical scenarios, users not only
require a cost-optimal solution but also have many other
requirements on the hardware configuration. We can see from
the following four cases how AutoLink can satisfy users’
diverse requirements.

Case 1: Users require that the IoT device has the minimum
cost. Users can write the following AutoLink metaprogram to
meet this requirement:

Case 2: Users require that the device platform has the min-
imum cost and its lifetime must be longer than ten days with
an 8000-mAh battery. This requirement could be expressed
with the following AutoLink metaprogram:

We can see that AutoLink’s syntax allows users to specify
additional constraints for the generated device platform.

Case 3: Users may want to maximize the lifetime with four
additional constraints: 1) the cost is less than 100 USD; 2) the
MCU board of the system is specified as Arduino Uno.
3) the system has real-time constraints, i.e., the execution time
of loop() function must be no more than 5100 ms; and 4) the
system has good extensibility, i.e., the number of remaining
analog pins is no less than 4. The corresponding AutoLink
metaprogram is shown as follows:

We can see that in addition to cost, users can also specify
lifetime as the optimization goal. Moreover, AutoLink syn-
tax also supports hardware (line #3), real-time (line #4), and
extensibility constraints (e.g., in terms of the number of pins,
line #5).

Case 4: Users can also specify logical operations among the
constraints. For example, they can specify that: 1) the num-
ber of remaining ports should no less than four, and there is
at least one analog port or 2) the number of remaining pins
should no less than four, and there is at least one analog pin.
Along with the other constraints, the corresponding AutoLink
metaprogram is

AutoLink supports multiple conjunctions for users to express
the complicated logical relationship between conditions.

Hence, developing an IoT application with AutoLink needs
three inputs from users: an AutoLink metaprogram, an
application code using the language of hardware synthe-
sis system (e.g., TinyLink language for TinyLink [7] or
ModularMiddleware language for CodeFirst [9]) and the
user/hardware constraints.

The AutoLink metaprogram and the application code are
used to generate AutoLink constraints and optimization criteria
(e.g., cost, interface, time, and lifetime). These AutoLink con-
straints and optimization criteria, along with the user/hardware
constraints, are fed into AutoLink solver to obtain the final
output. With respect to the user/hardware constraints, for
users’ convenience, AutoLink automatically generates them
with the application code by calling the exposed APIs of
TinyLink system by default. Moreover, AutoLink also pro-
vides a command-line interface to support users for inputting
the user/hardware constraints generated by other synthesis
systems.

The results generated by AutoLink contain two parts:
hardware configuration and application binary. The hardware
configuration is the selected hardware manifest of the uploaded
user application, as Fig. 2 shows. With respect to the soft-
ware binary, in order to set developers apart from complicated
cross-compiling environments, AutoLink also automatically
compiles user code into the executable binary of the chosen
IoT device platform.

IV. PLATFORM GENERATION PROBLEM

A. IoT Device Platform

A typical IoT device platform (or hardware configuration)
consists of many hardware components. According to their
functions, the hardware components can be divided into three
categories.

1) Mainboard: It contains key computational components
of a system (e.g., MCU and ROM) and offers interfaces
for peripherals.

2) Shield: A shield can be plugged into the mainboard to
extend the number of interfaces. Moreover, some shields

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

5896 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

Fig. 2. Hardware connection output of case 2 in Section III.

provide functionalities (e.g., SD card shield) or even pro-
vide additional pins or ports with on-shield MCU (e.g.,
Grove Pi+).

3) Peripheral: A peripheral can connect to mainboards or
shields through interfaces. Peripherals could be divided
into sensing components (e.g., light sensor), communi-
cation components (e.g., BLE and WiFi), and controlling
components (e.g., LED and relay).

Different hardware components can be connected via differ-
ent interfaces. The interfaces can be divided into six categories
(digital, analog, I2C, UART, PWM, and SPI) according to
the communication protocols or two categories (port and pin)
according to the physical appearance. Ports are encapsula-
tions of pins. Hence, AutoLink includes a hardware database
containing different kinds of hardware components and their
characteristics.

B. Optimization Problem

We first introduce the notations used in this section.
1) M, S, D: We use them to denote the set of mainboards,

shields, and peripherals, respectively.
2) C, X, T, L, P: We use them to denote the cost, exten-

sibility, execution time, lifetime, and average power of
the device platform.

3) di, ci: We use di to denote the selection indicator, di = 1
indicates hardware component i is selected in the device
platform. ci is the price of component i. i ∈ M ∪ S ∪ D.

4) W, I: We use W={pin, port} to denote the set of physi-
cal encapsulations and I={Analog, Digital, UART, I2C,
PWM, SPI} to denote the set of protocols.

5) Xw,I , Xmcu,I : We use Xw,I to denote the remaining
number of interface w ∈ W with protocol I ∈ I.
Due to the available interface number also restricted by
the MCU-supported pin [7], we use Xmcu,I to denote
the remaining MCU-supported pin of protocol I ∈ I.
For example, Xpin,I2C and Xmcu,I2C are the number of
remaining physical and MCU pins of protocol I2C.

6) X
+
i,w,I , X

−
i,w,I , X

+
i,mcu,I , X

−
i,mcu,I : We use X

+
i,w,I and X

−
i,w,I

to denote the interface number of encapsulation w
and protocol I ∈ I provided/consumed by hardware i.
Similarly, X

+
i,mcu,I and X

−
i,mcu,I denote MCU-supported

pin number of protocol I ∈ I provided/consumed by
hardware i. For example, X

+
i,pin,I2C (or X

−
i,pin,I2C) and

X
+
i,mcu,I2C (or X

−
i,mcu,I2C) are the number of provided(or

consumed) I2C pins and MCU-supported I2C pins of
hardware component i.

7) U, Ebattery: We use U to denote the code set of the
input user application and Ebattery to denote the battery
capacity when calculating lifetime.

Problem Formulation: An AutoLink metaprogram is typi-
cally transformed into the following optimization problem:

Find the values of di (∀i ∈ M ∪ S ∪ D)

max / min Obj1

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

User Constraints
Hardware Constraints
Obj2 ≥,≤ Req2
. . .

Objn ≥,≤ Reqn

(1)

where user and hardware constraints are generated according
to the constraints in the adopted hardware synthesis technique
(TinyLink system in our implementation). {Req2, . . . , Reqn}
in (1) are specified in the AutoLink metaprogram. Each Obj
is among the four optimization criteria: {Cost, Extensibility,
Time, Lifetime}.

Definition 1 (Cost): We define cost as the sum of each com-
ponent’s price in an IoT device system. For example, objective
min Cost can be expressed as

min C(di) =
∑

i∈M∪S∪D

cidi. (2)

Definition 2 (Extensibility): We define extensibility as the
remaining interfaces of the generated device platform.

Similar to cost, extensibility could also be expressed with
selection indicator di since the interface number of component
i is constant. For example, the constraint Pin.I2C>k could
be transformed into two constraints
⎧
⎨

⎩

Xpin,I2C = ∑
i∈M∪S∪D

(
X

+
i,pin,I2C − X

−
i,pin,I2C

)
di > k

Xmcu,I2C = ∑
i∈M∪S∪D

(
X

+
i,mcu,I2C − X

−
i,mcu,I2C

)
di > k

(3)

due to the pin number is restricted by both physical and MCU-
supported pin numbers [7].

It is worth noting that remaining memory could also be a
measurement of extensibility, and we will consider it in future
work.

Definition 3 (Execution Time): We define it as time used for
executing one iteration of a specific function.

For example, metaprogram Time.Loop <= 5100 ms
represents the time of execute loop() function once (denoted
as T) should be no more than 5100 ms. Apparently, T not only
depends on the hardware di but also the input user code U.

Definition 4 (Lifetime): We define the lifetime as the live
duration of the IoT device platform powered by a battery with
fixed capacity.

For example, objective max Lifetime could be con-
verted as

max L(di, U) = Ebattery/P(di, U). (4)

In AutoLink, we set the default Ebattery as 10000 mAh if
users not specified in the AutoLink metaprogram. Hence, the
question of estimating L turns into predicting P. Similar to
execution time, power consumption (i.e., lifetime) also not
only depends on di but also depends on U.

We say both cost and extensibility as static criteria since
they are independent of the user program. However, it is chal-
lenging to express the execution time and lifetime since these

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

LI AND DONG: AUTOMATIC GENERATION OF IoT DEVICE PLATFORMS WITH AutoLink 5897

two metrics depend not only on the hardware components but
also on the input application code. Take the lifetime as an
example, for an application with 99% duty cycle, an MCU
with low active power may be selected. In comparison, for a
1% duty-cycled application, an MCU with low sleep power is
better. We say, both time and lifetime as dynamic criteria.

It is also worth noting that the optimization problem changes
drastically with the addition of lifetime and time constraints.
Cost, extensibility, and user and hardware constraints can all
be expressed as linear functions of di, whereas the time and
lifetime constraints are nonlinear functions of di. Hence, tra-
ditional ILP solvers cannot be reused for our problem and
how to efficiently solve the complicated problem is another
challenge of AutoLink.

We will address the above two challenges in Sections VI
and VII-A, respectively.

V. SYSTEM OVERVIEW OF AUTOLINK

In this section, we will give a bird’s-eye view of our
hardware platform generation and optimization system.

Fig. 3 depicts the system architecture of AutoLink.
AutoLink metaprogram serves as the input of two criteria
generation systems.

1) In the static criteria generation system, besides the
metaprogram, the static criteria generator also takes the
cost and number of pins and ports of each component
as input. It then generates cost and interface objectives
and constraints with (2) and (3).

2) In the dynamic criteria generation system, our estima-
tion model takes time and power profiles of hardware
components as well as user code as input, then gener-
ates the estimated execution time and power. Combined
with metaprogram, the estimated expressions of time and
power finally transform into time and power constraints.

Finally, AutoLink solver takes the outputs of the two gen-
eration systems as well as user and hardware constraints as
input, then generates the device platform (i.e., di). Our hard-
ware database contains general information and the necessary
properties used in the two systems, namely, the name of the
hardware, cost, number of pin/port consumed/provided, and
functionality.

VI. DYNAMIC CRITERIA GENERATION SYSTEM

This section describes how AutoLink transforms dynamic
criteria, time and lifetime, in the metaprogram into mathemat-
ical expressions.

We first introduce the notations used in this section.
1) tAPI, t�, tidle: We use them to denote the time of exe-

cuting APIs, non-API code, and idle time in the loop()
function.

2) f , F, u, �: We use f ∈ F and u ∈ � to denote an API
and a line of non-API code, where F and � denote the
set of APIs and non-API code. F ∪ � = U.

3) Sf , Df : We use Sf and Df to denote the shield and
peripheral set that provide API f .

4) βf , βu: We use βf and βu to represent the path-weighted
execution count of f and u, which is designed to capture

Fig. 3. System architecture of AutoLink.

the influence of different execution path in the time and
power estimation model.

5) ti,j,f , ti,u: We use ti,j,f to denote the execution time
of API f on mainboard i and peripheral j. ti,u is the
execution time of non-API code u on i.

6) Pi(U), Pi,j(U): We use Pi(U) to denote the power
consumed by mainboard i, and Pi,j(U) is the power
consumed by component j on mainboard i, which
reflects the electrical characteristics of different hard-
ware combinations.

7) k, Ki, K
active
i , K

idle
i : We use K

active
i and K

idle
i to denote

the set of idle and active states, k ∈ Ki = K
active
i ∪K

idle
i .

8) μk
i , μ

k
i,j: We use μk

i and μk
i,j to denote the duty cycle of

component i (or component i on mainboard j) at power
state k.

9) Pk
i , Pk

i,j: We use Pk
i and Pk

i,j to denote the power of
component i (or component i on mainboard j) at power
state k.

The execution time could be expressed as the sum of the
execution time of active state and idle state. Furthermore, the
active time can be divided into the time of executing APIs
(tAPI) and non-API code (t�). For example, objective min
Time.Loop is transformed into

min T(di, U) = tAPI(di) + t�(di) + tidle(U). (5)

The lifetime could be converted to power consumption
with (4). Since different types of mainboards own different
electrical characteristics (e.g., resistance), components exhibit
different power when they plugged onto different mainboards.
Hence, we obtain the average power P(di, U) of an IoT device
platform as

P(di, U) =
∑

i∈M

Pi(U)di +
∑

i∈M

∑

j∈S∪D

Pi,j(U)didj. (6)

The complete dynamic criteria generation toolchain of
AutoLink is illustrated in Fig. 4. In the rest of this sec-
tion, we, respectively, describe our time and power estimation

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

5898 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

Fig. 4. Dynamic constraints generation toolchain.

Fig. 5. Screenshot of AutoLink Visualizer.

Fig. 6. Illustration of power states of a temperature read API.

model that fully exploits cross-hardware characteristics in
Sections VI-A and VI-B, then describe the automatic profile
generation system in Section VI-C.

A. Time Estimation Model

AutoLink’s duty cycle-aware power model builds upon our
time model; hence, we first describe how AutoLink estimates
tAPI, t�, and tidle in (5). tAPI and t� can be expanded with di as

{
tAPI(di) = ∑

f ∈F
∑

j∈Sf ∪Df

∑
i∈M

didjβf ti,j,f
t�(di) = ∑

i∈M

∑
u∈� diβuti,u.

(7)

βf and βu represent the fraction of different execution paths
of branches or loops in the user code. Through AutoLink
Visualizer, as Fig. 5 shows, developers can adjust the execution
ratio of each branch in the whole program control-flow graph
which is generated by AutoLink Path Generator, implemented
with ANTLR.

ti,j,f is the execution time of API f on mainboard i and
peripheral j. It varies among different <i, j, f > tuple mainly
due to different hardware pairs and data communication pro-
tocols. We will elaborate on the automatic generation of
ti,j,f in Section VI-C. Nevertheless, the execution time of
some APIs depends on the size of input parameters, such
as Bluetooth.send. Toward this, we introduce AutoLink

Variable Analyzer, a taint analyzer built on the top of
Valgrind [13], to mark the parameter as taint sink, propagates
backward and calculates the size of the taint source. If the
taint source depends on external input (e.g., Fig. 1 line #11),
AutoLink utilizes Visualizer to interact with developers. It is
worth noting that both the time and power estimating mod-
els capture the ideal network conditions without consideration
for different connection parameters as well as environmen-
tal disturbances by default. AutoLink can be extended to
capture different connection parameters. This is because the
AutoLink Variable Analyzer can capture the parameters spec-
ified in the corresponding TinyLink APIs and use a prebuilt
time model to capture the impact of the parameters. We take
LoRa, a widely used long-range communication technology,
as an example. There are three important parameters that affect
the bitrate of LoRa: spreading factor (SF), coding rate (CR),
and signal bandwidth (BW). For example, the SF could be
set to x with API rf95.setSpreadingFactor(x). The
AutoLink Variable Analyzer can analyze the specific value
of x. Finally, the data rate (DR) can be calculated with equa-
tion DR = SF(BW/2SF)CR [14]. The time criterion can thus
be calculated according to (7). Similarly, AutoLink can also
be applied to other short-range technologies, such as BLE [15]
and 802.15.4 [16]. With regard to environmental disturbances,
our system allows the developers to specify a network coeffi-
cient in the AutoLink Visualizer if the developer has a good
estimation of network condition.

ti,u depends on the chosen mainboard due to the differ-
ent MCU frequency and instruction set. Nevertheless, it is
inaccurate to profile and model at the high-level program-
ming languages, such as C due to the vast set of C grammar
and versatile semantic. Therefore, different from Amulet [8],
we go further to the assembly level. The stiff nature of
assembly could increase the granularity of our time model;
hence, we implement AutoLink Assembly Mapper for map-
ping user code to assembly. Then, we model the execution time
of non-API code using profiles containing instruction cycles
and architecture-specific metrics, such as MCU throughput
(MIPS/MHz) and frequency, for each mainboard to address
the different performance induced by architectural design.

B. Power Estimation Model

Building upon the time model, we propose our duty cycle-
aware power estimation model. With fully aware of duty cycle,
Pi(U) and Pi,j(U) in (6) could be expanded as

{
Pi(U) = ∑

k∈Ki
μk

i (U)Pk
i , i ∈ M

Pi,j(U) = ∑
k∈Kj

μk
i,j(U)Pk

i,j, i ∈ M, j ∈ S ∪ D.
(8)

Pk
i (or Pk

i,j) is the power of mainboard i (or peripheral i on
mainboard j) at power state k. Due to our preliminary exper-
iment, as Fig. 6 shows, invoking an API could incur several
power states of a specific peripheral. Even if the API ends,
the peripheral may still stay in a tail energy state [17]. The
same variation is observed in the non-API code. Hence, we
argue that considering the variation of power states during an
API call could achieve better accuracy in our power model.
The time spent of each state, denoted as τ k

i,u or τ k
i,j,f , is also

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

LI AND DONG: AUTOMATIC GENERATION OF IoT DEVICE PLATFORMS WITH AutoLink 5899

automatically generated and profiled in our power database as
detailed in Section VI-C.

μk
i (U) (or μk

i,j(U)) is the quotient of active and total time

μk
i (U) =

∑

u∈�

βuτ
k
i,u/T (9)

μk
i,j(U) =

∑

f ∈Fi

βf τ
k
i,j,f /T. (10)

Hence, the duty cycle of component i could be expressed as

μi =
∑

k∈K
active
i

μk
i . (11)

C. AutoLink Profile Generation System

AutoLink profile generation system (APGS) automatically
generates the profile used in our time and power estimation
model. APGS is composed of Time- and Power-APGS.

Time-APGS: Assembly cycle mapping and MCU through-
put index is fixed for a specific MCU architecture. We have
already obtained the data of four architectures (AVR ATmega,
ARM Cortex-A7, A8, and A53), which encompass most of
the prevalent MCU architectures today. Developers only need
to adjust the MCU frequency if the new mainboard shares the
same architecture as existing profiles.

We profile API execution time by automatically instrument-
ing the API with a timestamp. To achieve better accuracy, we
run test cases several times and take the average result into
API time profile.

Power-APGS: Power profile records how API changes the
power state (Pk

i,j,f) and the duration of each power state caused
by invoking an API (τ k

i,j,f). Note that the endurance time of a
specific power state when invoking an API is different from
API execution time due to the tail energy period [17], as Fig. 6
shows. For a new hardware i that supports API set Fi, we
designed a general benchmarking schema using the power
trace obtained with Monsoon Power Monitor, which con-
tains numerous pairs of timestamp and instantaneous power.
AutoLink leverages the k-means clustering to automatically
separate different power states and record the power and dura-
tion of each state. Parameter k could be obtained with the
datasheet.

VII. IMPLEMENTATION AND EVALUATION

In this section, we give a brief description of AutoLink
implementation details and present the evaluation results from
various angles.

A. Implementation Details

We implemented the complete process of AutoLink illus-
trated in Fig. 3. In this section, we focus on the implementation
of its solver.

Applying the dynamic criteria to the optimization problem
presented in Section IV-B makes it as a mixed-integer nonlin-
ear programming (MINLP) problem, where the integer vari-
able stands for the hardware selection vector di. Therefore, the
ILP solver of TinyLink is no longer sufficient. Various methods

Fig. 7. Number of hardware components in AutoLink database.

are proposed to solve the MINLP problem, such as optimal
algorithms (e.g., brute-force and SMT [10] approaches) and
heuristic solvers.

Similar to the prior work EDG [6], the SMT solver Z3 [10]
seems to be a plausible solver. Hence, we tailor Z3 with a
step-by-step approaching strategy to solve our optimization
problem. Nevertheless, AutoLink obtains over 200 pieces
of hardware constraints and over 100 solution dimensions.
The 104 solving space will enlarge the solving time to an
unacceptable extent because the optimal algorithms endure
triple-exponential time complexity. In our experiment, the
SMT solution time increases from 0.0119 s to 63.52 min when
the solving space grows from 50 to 104. Therefore, we adopt
the memetic algorithm, a metaheuristic that exhibits high scal-
ability (3.16 s for 104 solving space) and less probability
to local optima, as the core of AutoLink solver. The algo-
rithm is iterative, and each iteration contains mutation, local
search, and recombination. We obtain the following parame-
ters of the algorithms by referring to [18] and fine tuning with
experiments: 1000 generations, 100 population size, and 0.01
mutation probability. Furthermore, AutoLink also supports a
neural network-based approach to gain the result IoT device
platform. Compared with the memetic approach, the neural
network approach exhibits a shorter solving time while with
lower accuracy. To build our system with more judicious, we
use the memetic solver by default, and present a knob for
users to switch between the default solver and the quicker
neural network solver.

B. Evaluation Setup

Hardware Database: As Fig. 7 shows, we obtained 13 main-
boards, including the mainstream ones, such as Arduino Uno
(ARD for short), LinkIt One (LIO for short), Raspberry Pi
(RPI for short), and BeagleBone (BBB for short), 16 shields,
and over 100 peripherals in three categories.

Macrobenchmark: We selected and implemented five real-
world IoT projects from popular IoT websites, such as
Hackster.io, Maker.pro and Instructables.com
as macrobenchmarks to validate the effectiveness of AutoLink.
Table I summarizes the project names and main functionalities.

Microbenchmark: We selected five generally used functions
in IoT applications [7] as microbenchmarks to evaluate the
accuracy of time and power estimation method described in
Section VI: 1) Temp. read; 2) Light read; 3) Humidity read;
4) Gyro read; and 5) BLE Send.

Case Study: We use three real-world case studies, which are
a long-lasting smart houseplant node described in Section III,

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

5900 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

TABLE I
MACROBENCHMARKS TO TEST THE EFFECTIVENESS OF AUTOLINK

Fig. 8. Relative decreased percentage (for power and real time) and the
magnification (for pin and port) compared with TinyLink [7].

Fig. 9. Relative decreased percentage (for power and real time) and the
magnification (for pin and port) compared with CodeFirst [9].

a highly extensible air quality monitoring node and a real-time
toxic gas detection node in Section VII-D.

C. Overall Evaluation

To evaluate the overall optimization effectiveness of
AutoLink, we rehearse each macrobenchmark with five pieces
of AutoLink metaprogram individually, namely: 1) max life-
time; 2) min Time.Loop; 3) max Pin; 4) max Port.Analog; and
5) max Pin.Digital, and compare the performance of the syn-
thesized device platform with TinyLink [7] and CodeFirst [9].
We use Monsoon Power Monitor [19] to measure the power
consumption.

Figs. 8 and 9 illustrate the relative decreased percentage (for
power and real time) and the magnification (for extensibility)
compared to the device platform generated by TinyLink and
CodeFirst. Note that the result of CodeFirst for one input is
not exclusive. It is mainly due to CodeFirst focuses on gen-
erating a valid configuration rather than an optimized one.
Each one could be CodeFirst’s output if there are multiple
possible results available. Hence, in Fig. 9, we averaged
the performance of all possible solutions by CodeFirst by
modifying the algorithm of CodeFirst to force it into gener-
ating all possible configurations. BCR, AYH, POI, SSM, and
MTL denote the macrobenchmark #1–#5, respectively. We can
observe that AutoLink generates the better-performed solution
for the optimization goal specified in the metaprogram for
most cases compared with state of the arts. The average per-
centages of decreased/increased performance among the five
benchmarks are 21.99%, 69.21%, 3.89×, 1.4×, and 5.18×
when compared with TinyLink, and 91.72%, 52.74%, 2.11×,

Fig. 10. Radar graph of the illustrated cases in Table I. Vertices of the
triangle depicts the optimal value generated with the brute-force searching
approach.

2.01×, and 2.21× when compared with CodeFirst. Combining
the results shown in Figs. 8 and 9, we notice that the power
reduction when compared with CodeFirst is much larger than
those with TinyLink, which is mainly due to the multiple
results of CodeFirst contain high power consumption, such as
BBB and RPI. When minimizing the power of the POI project,
the solution generated by AutoLink gains no improvement due
to the cost-optimal and power-optimal solution results in the
same hardware configuration, which contains the LIO main-
board (GPS and WiFi are onboard modules) with a Grove
RGB Backlight LCD.

D. Case Study

Smart Houseplant Node: This case has been described in
Section III. The generated hardware configuration is summa-
rized in Table II (the lifetime is normalized with 10 000-mAh
battery for comparison). We use a radar graph to illustrate the
performance of different objectives as Fig. 10 and all data have
been normalized with the maximum of each dimension.

Case 1 generates the cost-optimal solution. In the radar
graph, the triangle of case 1 reaches the peak in cost dimen-
sion. While in lifetime or extensibility (i.e., analog pin) dimen-
sion, it is not the best hardware configuration. Case 2 adds
a lifetime constraint; hence, the generated platform changes
from ARD to LIO due to it exhibits lower power but costs
more. Case 3 illustrates the user requires to use ARD and
specifies a real-time constraint. Thus, AutoLink chooses Grove
Temperature Sensor other than DHT11 to meet the time con-
straint due to the execution cycle of DHT11 (272 ms) is too
long. Case 4 illustrates a more complicated constraint of port
number. Compared with case 2, to meet the port number con-
straint, a digital light sensor is chosen for light function due
to the number of analog MCU pin on LIO is only 3.

Compared with TinyLink, AutoLink generates different
device platforms that meet user’s demands best.

Highly Extensible Air Quality Node: Mosaic [5] is a mobile
sensing network system deployed on buses to achieve city-
scale air quality sensing. A Mosaic node measures PM2.5,
PM10, GPS, temperature, and humidity data, uploads them to
the cloud server through GPRS and saves system logs in SD
card. Due to the UART and Digital pin extensibility of Arduino
is low, Mosaic falls flat while adding some new functionalities

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

LI AND DONG: AUTOMATIC GENERATION OF IoT DEVICE PLATFORMS WITH AutoLink 5901

TABLE II
HARDWARE CONFIGURATIONS OF SMART HOUSEPLANT NODE GENERATED BY DIFFERENT AUTOLINK METAPROGRAM

TABLE III
HARDWARE CONFIGURATIONS OF AIR QUALITY NODE

TABLE IV
HARDWARE CONFIGURATIONS OF TOXIC GAS DETECTION NODE

such as carbon dioxide sensing. Hence, we use a metapro-
gram as max Pin.Digital, Pin.UART>3 to avoid the
extensibility shortage. Table III lists the resulting hardware
configurations and the number of digital and UART pins left
of AutoLink and Mosaic. The hardware platform generated by
AutoLink uses BeagleBone Black (other than Arduino Uno)
mainly due to BBB has 10 UART pins and 69 digital pins,
which is much more than ARD (UART 2, digital 14). The
assembled AutoLink node is shown in Fig. 11(a).

Real-Time Toxic Gas Detection Node: Toxic gas such as car-
bon monoxide might be produced when heating with charcoal
fire. We intend to create an application that could take immedi-
ate actions (e.g., open the windows with electromagnetic relay)
when detected a harmful concentration of toxic gas. Hence,
we use AutoLink metaprogram: min Time.Loop. Table IV
lists the resulting hardware configurations of AutoLink and
TinyLink. Comparing to the solution of TinyLink, AutoLink
selects Raspberry Pi to gain a faster computation speed. The
result of AutoLink mainly differs from TinyLink’s in select-
ing Raspberry Pi (other than Arduino) and MQ-9 gas sensor
(other than NGL07), which gain a faster computation speed.
The toxic gas detecting and processing time reduced from
TinyLink’s 1599.46 to 286.79 ms. Fig. 11(b) illustrates the
AutoLink node.

(a) (b)

Fig. 11. Assembled AutoLink nodes for two real-world case studies.
(a) Highly exten. air quality node. (b) Real-time toxic gas dete. node.

E. Dynamic Constraints Estimating Evaluation

We implement five microbenchmarks in Section VII-B and
four cases in Table II on both ARD and LIO mainboards.

Time Estimating Accuracy: As is illustrated in Fig. 12(a), the
time estimation error is less than 6% on ARD and 10% on LIO.
The extra error of LIO mainly derived from the time shift on
LIO when invoking a delay API provided by its manufacturer.
As Fig. 12(b) shows, the time shift relates to the parameter of
delay API. The time shift mainly due to the Arduino Porting
Layer of LIO builds on the top of its FreeRTOS system, which
aims to support the delay API while its execution may be
interrupted by RTOS driver.

Power Estimating Accuracy: To address the impact of duty
cycle, we adjust delay time from 0 to 5000 ms of the test
cases. Fig. 13(a) and (b) illustrates the estimated power and the
average error of each benchmark on both mainboards and case
studies. Compared to the state-of-the-art method Amulet [8],
whose highest error is 9.7% and the average error is 5.8%,
AutoLink power estimation exhibits better performance. The
maximum error on ARD is less than 5% and the average
error of all benchmarks and cases is 2.32%, which is outper-
formed than LIO (maximum: 7.50% and average: 5.06%). The
reason for the improvement is our estimation model treats non-
API code differently using Variable Analyzer and Assembly
Mapper while Amulet treats it the same, and we model the
power fluctuation when different hardware components co-
work with each other. We note that estimation error on LIO
is generally larger than ARD both in time and power evalua-
tion. The reason is that the MCU autoscaling and background
services such as watchdog on LIO leads to the fluctuation of
execution time and power.

VIII. DISCUSSION

In this section, we discuss several open issues, point out
limitations and identify the future work of AutoLink.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

5902 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 7, APRIL 1, 2021

(a) (b)

Fig. 12. Time estimating evaluation results. (a) Time estimating accuracy of
mainboard ARD and LIO. (b) LIO time shift. We tested on three LIO boards
denoted as #1–#3.

(a) (b)

Fig. 13. Power estimating evaluation results. (a) Accuracy on ARD.
(b) Accuracy on LIO.

Software Extensibility Modeling: Currently, AutoLink mea-
sures extensibility using the remaining number of hardware
interfaces. Nevertheless, the software extensibility, i.e., limited
ROM and RAM space, remains as an obstacle for IoT applica-
tions. For example, Arduino Uno owns only 32-KB flash and
2-KB RAM, which is unable to support an application with
both WiFi and SD card saving functionality. Prior studies of
RAM usage prediction contain white-box methods [20], [21]
and ones facilitated with supervised or unsupervised machine
learning algorithms [22], [23]. In order to tackle the ROM and
RAM shortage problem in the device platform generation pro-
cess, we consider obtaining the ROM and RAM usage of user
code without running or compiling is a possible future work
of AutoLink. We consider obtaining the software extensibil-
ity without compiling or running as a possible future work of
AutoLink.

Secondary Development Modeling: When developers con-
tinue with a subsequent development with existing hardware
and some modified requirements, generating an entirely new
device platform means developers would enlarge their expen-
diture to accommodate with the new platform, which is not
acceptable. The importance of secondary development makes
it one of the intended extension of AutoLink, and it could be
alleviated by taking the existing device platform (i.e., di) as an
input of AutoLink and considering of the difference between
existing and ongoing di with cosine similarity or other distance
metrics.

Embedded OS support of AutoLink: In general, exploiting an
embedded OS generally brings task scheduling and dedicated
programming styles to devices, compared with programming
on bare-metal mainboards such as Arduino’s. Hence, porting
an embedded OS to AutoLink mainly targets these two aspects.

1) Task scheduling indicates that our time and power model
should adapt to a more complicated scenario than the
bare-metal’s. Nevertheless, the APGS we introduced

in Section VI-C automatically generates the time and
power profiles when Contiki OS exists.

2) Another problem is the new programming style. Take
Contiki OS as an example, it adopts an event-driven
programming style based on C language. First, the setup-
loop programming style in AutoLink is easily adopted
to Contiki by using the timer instead of Time.sleep() in
the loop function. For the native Contiki event-driven
programs, we leverage our AutoLink Visualizer to take
developer’ intuitions to the occurring frequency of the
events into consideration. Then, our models could make
predictions to execution time and power.

Furthermore, existing dedicated solutions to model time and
power for event-driven systems, such as TOSSIM [24] (for
time) and Quanto [12] (for power), are also applicable for
AutoLink.

Hardware Community Enlightenment: During our devel-
opment and evaluation of AutoLink, we conduct several
suggestions to whom may concern about hardware design.
Take the four mainboards we discussed in the evaluation as
examples. ARD mainboard owns a limited number of analog
pins, which suppresses its appliance in terms of extensibility.
While benefited from its low price, ARD could still be chosen
in specific scenarios, such as cases 1 and 3 in Table II. LIO
occupies a place in the market owing to its low-power nature,
but its high price and low MCU performance stall it from dom-
inant in our selection space. Mainboards with more powerful
MCUs, such as RPI and BBB, should concentrate on power-
saving techniques and lower prices, which will make them a
better competitor in the IoT mainboard market.

Bring AutoLink Closer to Commercial Production: In our
current implementation, hardware components in AutoLink
database are mainly prototyping components, while com-
mercial IoT products generally exhibit well encapsulation
such as PCB. In the future, AutoLink could embrace the
System-in-Package (SiP) [25] technique that achieves better
encapsulation than prototyping and may lead AutoLink closer
to manufacturing.

IX. CONCLUSION

In this article, we advocated AutoLink, an automatic
approach to generating an IoT application. We take the life-
time, extensibility, cost, and timeliness of an IoT system
into consideration and propose an expressive syntax for users
to specify their diverse requirements for IoT device plat-
forms. Furthermore, AutoLink proposes a duty cycle-aware
power estimation model. We implemented AutoLink and eval-
uated its performance using benchmarks and real-world cases.
Experiments show that AutoLink can generate the optimal
hardware configuration that meets user requirements.

REFERENCES

[1] Worldwide Global DataSphere IoT Device and Data Forecast, 2019–
2023, IDC, Framingham, MA, USA, May 2019.

[2] Predicts 2016: Unexpected Implications Arising From the Internet of
Things, Gartner, Stamford, CO, USA, Jan. 2016.

[3] IoT Signals: IoT Is Driving Both Opportunity and Revenue, Microsoft,
Redmond, WA, USA, Jul. 2019.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

LI AND DONG: AUTOMATIC GENERATION OF IoT DEVICE PLATFORMS WITH AutoLink 5903

[4] M. Hessar, V. Iyer, and S. Gollakota, “eNABLING on-body trans-
missions with commodity devices,” in Proc. ACM UbiComp, 2016,
pp. 1100–1111.

[5] Y. Gao et al., “Mosaic: A low-cost mobile sensing system for urban air
quality monitoring,” in Proc. IEEE INFOCOM, 2016, pp. 1–9.

[6] R. Ramesh et al., “Turning coders into makers: The promise of
embedded design generation,” in Proc. ACM SCF, 2017, pp. 1–10.

[7] G. Guan, W. Dong, Y. Gao, K. Fu, and Z. Cheng, “TinyLink: A holis-
tic system for rapid development of IoT applications,” in Proc. ACM
MobiCom, 2017, pp. 383–395.

[8] J. D. Hester et al., “Amulet: An energy-efficient, multi-application
wearable platform,” in Proc. ACM SenSys, 2016, pp. 216–229.

[9] D. Graham and G. Zhou, “Prototyping wearables: A code-first approach
to the design of embedded systems,” IEEE Internet Things J., vol. 3,
no. 5, pp. 806–815, Oct. 2016.

[10] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proc.
ETAPS TACAS, 2008, pp. 337–340.

[11] J. P. McDermott, “R1: A rule-based configurer of computer systems,”
Artif. Intell., vol. 19, no. 1, pp. 39–88, 1982.

[12] R. Fonseca et al., “Quanto: Tracking energy in networked embedded
systems,” in Proc. USENIX OSDI, 2008, pp. 323–338.

[13] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in Proc. ACM PLDI, 2007,
pp. 89–100.

[14] A. Augustin, J. Yi, T. H. Clausen, and W. M. Townsley, “A study of
LoRa: Long range & low power networks for the Internet of Things,”
Sensors, vol. 16, no. 9, p. 1466, 2016.

[15] M. Spörk et al., “Bleach: Exploiting the full potential of ipv6 over
ble in constrained embedded IoT devices,” in Proc. ACM SenSys, 2017,
pp. 1–14.

[16] M. Zimmerling, F. Ferrari, L. Mottola, T. Voigt, and L. Thiele, “pTunes:
Runtime parameter adaptation for low-power MAC protocols,” in Proc.
ACM/IEEE IPSN, 2012, pp. 173–184.

[17] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-grained
power modeling for smartphones using system call tracing,” in Proc.
ACM EuroSys, 2011, pp. 153–168.

[18] C. Cotta et al., “Memetic algorithms in planning, scheduling, and
timetabling,” in Evolutionary Scheduling. New York, NY, USA:
Springer, 2007, pp. 1–30.

[19] Monsoon Power Monitor. Accessed: Nov. 4, 2020. [Online]. Available:
https://www.msoon.com/

[20] M. Hofmann and S. Jost, “Static prediction of heap space usage for first-
order functional programs,” in Proc. ACM POPL, 2003, pp. 185–197.

[21] W.-N. Chin, H. H. Nguyen, C. Popeea, and S. Qin, “Analysing memory
resource bounds for low-level programs,” in Proc. ACM ISMM, 2008,
pp. 151–160.

[22] H. Leather et al., “Automatic feature generation for machine learning–
based optimising compilation,” ACM Trans. Archit. Code Optim., vol. 11,
no. 1, p. 14, 2014.

[23] K. E. Coons et al., “Feature selection and policy optimization for dis-
tributed instruction placement using reinforcement learning,” in Proc.
ACM PACT, 2008, pp. 32–42.

[24] P. Levis et al., “TOSSIM: Accurate and scalable simulation of entire
tinyos applications,” in Proc. SenSys, 2003, pp. 1–9.

[25] K. L. Tai, “System-in-package (SIP): Challenges and opportunities,” in
Proc. IEEE DAC, 2000, pp. 191–196.

Borui Li (Graduate Student Member, IEEE)
received the B.S. degree in computer sci-
ence from Nanjing University of Posts and
Telecommunications, Nanjing, China, in 2017.
He is currently pursuing the Ph.D. degree with
Zhejiang University, Hangzhou, China.

His research interests include Internet of Things
and edge computing.

Wei Dong (Member, IEEE) received the B.S.
and Ph.D. degrees from the College of Computer
Science, Zhejiang University, Hangzhou, China, in
2005 and 2011, respectively.

He is currently a Full Professor with the College
of Computer Science, Zhejiang University, where
he leads the Embedded and Networked Systems
Laboratory. He has published over 100 papers
in prestigious conferences and journals, including
MobiCom, INFOCOM, ICNP, ToN, and TMC. His
research interests include Internet of Things and sen-

sor networks, wireless and mobile computing, and network measurement.
Prof. Dong is a member of ACM.

Authorized licensed use limited to: Zhejiang University. Downloaded on April 02,2021 at 02:46:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

