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Abstract—IoT application development usually involves separate programming at the device side and server side. While separate
programming style is sufficient for many simple applications, it is not suitable for many complex applications that involve complex
interactions and intensive data processing. We propose EdgeProg, an edge-centric programming approach to simplify loT application
programming, motivated by the increasing popularity of edge computing. With EdgeProg, users could write application logic in a
centralized manner with an augmented If-This-Then-That (IFTTT) syntax and virtual sensor mechanism. The program can be
processed at the edge server, which can automatically generate the actual application code and intelligently partition the code into
device code and server code, for achieving the optimal latency. EdgeProg employs dynamic linking and loading to deploy the device
code on a variety of loT devices, which do not run any application-specific codes at the start. Results show that EdgeProg achieves an
average reduction of 20.96%, 27.8% and 79.41% in terms of execution latency, energy consumption, and lines of code compared with

state-of-the-art approaches.

Index Terms—Edge computing, loT, programming language

1 INTRODUCTION

NTERNET of Things (IoT) application development usually

involves separate programming at the device side and
server side. For example, consider a smart plant application.
Users can program an IoT node like Arduino to sense the
soil humidity of a plant. The sensing data can then be trans-
mitted to the back-end server for further analysis.

This separate programming style is sufficient for many
simple applications. However, it is not suitable for many
complex applications that involve complex interactions and
intensive data processing.

Complex Interactions. Consider the following application:
a user wants to turn on an LED when a sensor attached to a
door detects an open event. With the traditional program-
ming style, the application logic would be scattered among
different sensor nodes. Developers should cope with the
complex data stream and network interactions between sen-
sor nodes, which leads to increased system complexity and
reduced manageability.

Intensive Data Processing. Consider a speech recognition
application. A simple way of designing such a system
would deliver all the sensor data to the server running the
sophisticated recognition algorithm. This approach may
consume excessive energy due to a large number of
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transmissions. A different approach is to run the recognition
algorithm on the IoT device. This approach, however, may
cause excessive delays due to the insufficient computation
power of the device. Separate programming requires the
programmer to make proper decisions, which is quite
difficult.

We advocate here a different programming approach,
motivated by the increasing popularity of edge computing.
In the edge computing paradigm, a number of IoT nodes
can perform sensing and actuation. These nodes are con-
nected to a local edge that can perform sophisticated com-
putation. Moreover, edge servers usually have power
supplies and are less constrained by energy. Edge comput-
ing can offer low processing delay and better privacy.

Taking advantage of the edges, we have developed Edge-
Prog—a new programming style and software architecture
to greatly simplify IoT application programming, resulting
in a generic IoT system that can be reprogrammed for a vari-
ety of applications without significant loss of overall system
efficiency.

To use EdgeProg, developers write a program in a high-
level language integrating the whole application logic of an
IoT application. This program can further be processed at
the edge server, which can automatically generate the actual
application code and intelligently partition the code into
device code and server code. We call this approach edge-cen-
tric since developers can regard the program as if it runs on
the edge. More importantly, ordinary IoT nodes do not run
any application-specific codes at the start. When the pro-
gram is first executed, the device code will be automatically
loaded onto the memory of IoT nodes. Nevertheless, this
edge-centric programming process raises some challenges:

e How to design an edge-centric language that could
support multi-device interaction and data-intensive
computation?
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e How to partition the user-perceived program to
achieve the best delay performance or save most
energy?

e How to design a mechanism so that heterogeneous
sensor nodes can dynamically load the device-side
code and execute it in an efficient manner?

In order to support edge-centric programming and
speed-up the application development process, we design a
coherent language for specifying the multi-device interac-
tion based on the widely-adopted programming model,
IFTTT (IF-This-Then-That) [1]. To further enhance the
expressiveness and adopt the data-intensive computation,
we extend the traditional IFTTT syntax with the virtual sen-
sor, which accelerates developers to design their own data
processing logic with machine learning techniques.

EdgeProg conducts automatic code partitioning which
fully leverages the computation ability of each device and
achieves optimal end-to-end latency. We abstract the user-
written program as a data flow graph, formulate the parti-
tioning problem as an integer programming (ILP) problem
and leverage the efficient solver 1p_solve to obtain the
optimal partition.

We implement EdgeProg with Contiki OS for its cross-
platform support and the ability to load the optimized exe-
cutable at runtime with dynamic linking and loading tech-
nique. An alternative approach to change the application
logic during its execution is exploiting virtual machines
(VMs) or using a scripting language. Nevertheless, we do
not adopt the alternatives due to they introduce consider-
able overhead than dynamic linking and loading.

We implement EdgeProg and evaluate its performance
extensively. Results show that: (1) EdgeProg programming
language can express diverse IoT application logic and
reduces the lines of code needed by 79.41% on average. (2)
For the execution time of generated applications, EdgeProg
achieves a 20.96% reduction on average, and up to 99.05%
latency reduction across the five real-world applications
under all settings compared with state-of-the-art partition-
ing systems such as Wishbone [2] and RT-IFTTT [3]. (3) The
partitioned application generated by EdgeProg saves 14.8%
and 40.8% energy on average compared to Wishbone and
RT-IFTTT. (4) For application run-time, the dynamic linking
and loading technique outperforms than design alternatives
such as virtual machine (by 9.98x) and scripting languages
(by 6.37x). (5) The profiling methods adopted by EdgeProg
achieve 90%+ and 85%+ accuracy for over 98% test cases.
The contributions of this work are summarized as below:

e We present EdgeProg, an edge-centric programming
system for IoT applications. The EdgeProg language
relieves developers from scattered application logic
and enables them to express their logic in an easy-to-
use way.

e We formulate the code partitioning problem as an
ILP problem to minimize the makespan of the task
or the energy consumption. The partitioning algo-
rithm optimizes the placement of each stage in an
application with consideration of both processing
and network cost.

e Weimplement EdgeProgand evaluate EdgeProg mas-
sively with real-world applications and benchmarks.
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Results show that EdgeProg achieves better latency
reduction compared with state-of-the-art approaches

and fewer lines of code.
Compared to the conference version of EdgeProg [4], this
journal version contains the following important extensions.

e We add more detailed descriptions in Section 2 to
better illustrate the usage of EdgeProg.

e Besides latency, we facilitate EdgeProg with the abil-
ity to optimize the energy consumption of the edge-
device integrated system. Based on the efforts, we
reconstruct Section 4.2 with the new analytical for-
mulation of the energy optimization problem and its
solution. Also, we present descriptions of the build-
ing blocks towards energy optimization in Section 3.

e We add more details about how EdgeProg generates
the binaries with Contiki OS in Section 4.3.

e We present a much more detailed evaluation on
EdgeProg, especially on the energy optimization per-
formance, in Section 5.

e We add Section 6 to discuss several important issues
about EdgeProg.

The rest of this article is structured as follows. Section 2
describes the background and usage of EdgeProg. Section 3
overviews the design goals and building blocks. Section 4
presents the design details. Section 5 shows the evaluation
results. Section 6 discusses several important issues about
EdgeProg and Section 7 introduces the related work.
Finally, Section 8 concludes the paper.

2 BACKGROUND AND EDGEPROG USAGE

In this section, we briefly introduce the background of the
dynamic linking and loading technique of IoT devices used
in EdgeProg. Then we present the usage of EdgeProg with a
simple smart home application.

2.1 Dynamic Linking and Loading of loT Devices
Dynamic linking and loading is one of the over-the-air
reprogramming techniques for IoT devices. As its name
suggests, reprogramming with dynamic linking and load-
ing technique owns a linking phase and a loading phase. In
the linking phase, the on-device reprogrammer first parses
the structured information of a file in standard executable
and linkable format (ELF) or its variants (e.g., CELF [5] and
SELF [6]). Then the reprogrammer allocates ROM and RAM
for the data and text segment in the ELF file and performs
relocation. The relocation is to patch the data and text seg-
ment with real in-memory addresses of the symbols, which
are found in the symbol table or calculated using the reloca-
tion information in the ELF. Once the linking phase is com-
plete, the reprogrammer writes text segments to the
allocated ROM and copies data segments to the RAM,
which is called the loading phase. So far, the binary is
loaded and ready to be executed.

Compared with the alternatives such as virtual
machine [5], [7], [8] and bootloader [9], dynamic linking
and loading obtains several inherent merits. (1) High long-
term efficiency because it runs native code rather than vir-
tual machine code. (2) Reboot-less update, which is also
energy-saving. The recent container technology is also a
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(a) Pipeline illustration of SmartHomeEnv application.
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(b) Pipeline illustration of SmartDoor application.

Fig. 1. lllustration of execution stages of the two examples. Each block
represents one stage, and data exchange occurs between consecutive
stages.

potential alternative to dynamic linking and loading. How-
ever, it heavily relies on Linux services such as cgroup and
namespace, which is not available in the resource-con-
strained IoT devices such as Arduino, TelosB and STM32.

2.2 EdgeProg Usage

We excerpt a simple smart home project named SmartHo-
meEnv from smarthome.com to illustrate how EdgeProg
can be used. SmartHomeEnv takes the temperature and
humidity data from two IoT nodes as input, turns on the air
conditioner and dryer if the two readings exceed fixed
thresholds, as shown in Fig. 1a. The two nodes are wire-
lessly connected to an edge server, which could be a PC or
other devices that own strong computing ability.

In the traditional approach, two sensors are pre-installed
with an application-specific code with functions like period-
ically transmitting sensor values to the edge server. The
edge server further processes these readings and interacts
with the sensors with pre-defined interfaces.

With EdgeProg, in contrast, the two sensors are pre-
installed with an “idle” program without any application-
specific logic. The whole application logic is expressed in an
enhanced IFTTT-like language, which is interpreted and
processed at the edge server. Fig. 2 shows an EdgeProg
application of SmartHomeEnv. Lines 2-4 describe the devi-
ces (A, B, E) and their interfaces (e.g., the HUMIDITY of
device B) used in this application with keyword Configu-
ration. With the information above, lines 5-6 specify the
application logic following the IFTTT manner. The edge
server automatically partitions the codes into two compo-
nents, i.e.,, device-side components and edge-side compo-
nents. The former are compiled to a loadable module and
dispatched to the sensor nodes. Once notified, the “idle”
program in the IoT node can dynamically load application-
specific module for execution via dynamic linking and load-
ing technique.

EdgeProg also supports building complex applications
targeting intensive data processing with the virtual sensor.
Fig. 1b illustrates a SmartDoor application with several
steps for voice recognition. With EdgeProg, the latter steps
could be expressed by a virtual sensor VoiceRecog. Oppo-
site to the physical or hardware sensor, a virtual sensor is a
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1 Application SmartHomeEnv{

2 Configuration{TelosB A (TEMPERATURE) ;

3 TelosB B (HUMIDITY);

4 Edge E (turnOnAC, turnOnDryer);}

5 Rule{IF (A.TEMPERATURE > 30 && B.HUMIDITY > 70)
6 THEN (E.turnOnAC && E.turnOnDryer) }

7}

Fig. 2. Code snippets of SmartHomeEnv application.

logical entity that abstracts the data sensed by real sensors
which could be located at different places, which we will
further describe in Section 4.1.

A key feature of EdgeProg is that it can automatically
partition the whole application code to optimize the execu-
tion performance, which is increasingly essential for com-
putation-intensive IoT tasks such as speech recognition and
video surveillance. As illustrated in both figures of Fig. 1,
EdgeProg places each stage on appropriate devices for best
performance (i.e., execution time or energy consumption).
The MFCC and GMM algorithms in Fig. 1b may be too
heavyweight for resource-constrained IoT devices such as
TelosB or Arduino. Hence, EdgeProg will automatically
partition this task to the edge-side if it yields better perfor-
mance than placing it on the device.

3 EDGEPROG OVERVIEW

In this section, we first discuss the design goals of Edge-
Prog, overview our system design, and introduce some
essential components.

3.1 Design Goals

e Edge-centric. Compared to the traditional scattered
programming manner, EdgeProg should provide
users with an edge-centric approach to create the
application, which indicates that users need not to
break down the application logic into pieces during
development.

e  Cost-aware. The timeliness and energy consumption
are recognized as critical costs of an edge-device
coordinated application. The ability to deliver a cost-
optimal solution of a given input is one of the
requirements in EdgeProg’s design.

e Automatic. By automatic, we mean that EdgeProg
should conceive details which have no benefit for
users to express their ideas and removes human
from the loop to simplify and accelerate the applica-
tion development.

3.2 EdgeProg Architecture

In Fig. 3, we show a birds-eye view of EdgeProg’s system
architecture and functional workflow, considering a devel-
oping phase, a profiling phase, a binary generation phase,
and an execution phase. Users can directly write the appli-
cation code in an edge-centric manner, i.e., without follow-
ing the distributed programming style or considering the
physical placement of each stage (see Section 4.1 for details).
The system takes the user code as input, preprocesses and
feeds it into the code partitioner. With the help of the time,
energy and network profile of each device or application, the
code partitioner finds the optimal partition and placement
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Fig. 3. System overview of EdgeProg.

of each stage using our partitioning algorithm. Processed by
the code generator, the user-written code is then transformed
into the compilable code and compiled to executable or
loadable binary by the code compiler. Finally, the executables
are disseminated to the devices over the air or deployed on
the edge device if necessary.

User Input. The user input is written in the EdgeProg pro-
gramming model, which centers around the notion of
Rules that specifies the application logic with sensor data,
actuator presented by the devices, specified by Interfa-
ces, or virtual sensors’ output, specified by Implementa-
tion. Detailed features of the EdgeProg programming
language are specified in Section 4.1.

Code Partitioner. The code partitioner is responsible for gen-
erating the optimal partition of the user-input applications.
We will further give a detailed description in Section 4.2.

Time Profiler. The execution time of each stage on differ-
ent devices represents the different computation capabilities
of each device, which is one of the critical inputs to the code
partitioner. Similar to [2], [10], EdgeProg leverages a profil-
ing phase to obtain the execution time on different plat-
forms. For the low-end sensor nodes, we exploit the cycle-
accurate simulators such as MSPsim for MSP430-based
nodes (e.g., TelosB) and Avrora for AVR-based nodes (e.g.,
MicaZ) to get the timing information. For the high-end devi-
ces such as Raspberry Pi, profiling it with simulators will be
less accurate than the low-end ones mainly due to these
powerful devices employ automatic frequency scaling strat-
egy, which reduces the accuracy of a simulator. However,
executing on the real device and collect raw timing data is
painful and sometimes infeasible due to the hardware inter-
face limit of edge servers. Hence, we choose a near cycle-
accurate simulator named gem5 for profiling high-end devi-
ces. We will evaluate the profiling accuracy in Section 5.6.

Energy Profiler. In EdgeProg, an energy profiler is neces-
sary when the objective is to minimize energy consumption.
Hence, we build and maintain an energy profile of each
device. To be more specific, the profile mainly contains the
power under idle state, productive state and network TX/
RX. We adopt an automated hardware knowledge based
generation approach based on weak supervision learn-
ing [11], [12] to generate the energy profile of each device.
This learning-based approach reduces the instability and
randomness brought by human error, which is more scal-
able when generating profiles for new devices.

Network Profiler. Network condition (e.g., bandwidth) is
also a critical metric being fed into the partitioner. In order

to predict the network condition when the application is
deployed, we leverage the multiple-output support vector
regression (M-SVR) algorithm [13] since it generates a series
of prediction results representing the future network condi-
tion in a sequence of intervals. In our temporary implemen-
tation, the network profiler contains the prediction of the
WiFi and Zigbee network. Raw observations such as the
bandwidth and received signal strength indicator (RSSI),
which is sampled by the loading agent every 60s in order
not to influence the regular network transmission, are fed
into the M-SVR. Furthermore, when the IoT device is
deployed with an application and periodically uploads the
data or receiving the commands, the network profiler pig-
gybacks the measurement data with the regular sensor data
or commands to further reduce the energy overhead. The
predictor outputs the future throughput estimation and
per-packet transmission time for further fine-grained time
calculation in Section 4.2. Here, since the predicting algo-
rithm acts as a black-box in our system, EdgeProg can use
other prediction models instead of the M-SVR model.

Code Generator. The generated optimal partition is
processed by the code generator to translate the high-
level EdgeProg code into the compilable C code, detailed
in Section 4.3.

Code Compiler. Fed by the compilable code, the code com-
piler generates the executables for the target platform and
starts dissemination. In our current implementation, Edge-
Prog supports four MCU architectures (ATmega, MSP,
ARM and x86) with four platforms.

Loading Agent. At the very beginning of our system, there
is no application-specific logic running on the node except a
loading agent. The loading agent periodically communi-
cates with the edge server for new loadable applications.
Once the application is compiled by the compiler and starts
dissemination, the loading agent on the deployment desti-
nation detects, verifies and receives the executable and
dynamically runs it. Moreover, using the wireless channel
to dispatch the applications may be unstable due to the exis-
tence of wireless interference. Hence, we also advocate a
wired loading agent to support disseminating the binaries
through USB (for TelosB) and Ethernet (for Raspberry Pi).

4 SYSTEM DESIGN

In this section, we will first present the design of EdgeProg
programming language and highlight the features which
enable integrated development. Then we will describe how
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1 Application SmartDoor{ 1 VSensor VoiceRecog (AUTO) {
2 Configuration{ 2 VoiceRecog.setInput (A.MIC, A.Accel_x, A.Accel_y
3 RPI A(MIC, DOOR_UNLOCK, OPEN_DOOR) ; , A.Accel_z, B.Light, B.PIR);
4 TelosB B(LIGHT_SOLAR) ; 3 VoiceRecog. setOutput (<string_t>,"open", "close"
5 } )i
6 Implementation{ 4}
7 VSensor VoiceRecog ("FE, ID") {
8 VoiceRecog. setInput (A.MIC); . . . . .
9 FE. setMole (..MFC}CD..) ;( Vi Fig. 5. An example implementation code snippet of an algorithm-agnos-
10 ID.setModel ("GMM", "open.gmm"); tic virtual sensor.

11 VoiceRecog.setOutput (<string_t>,"open");
12 }

13 }

14 Rule(

15 IF (VoiceRecog=="open" && B.LIGHT_SOLAR<100)
16 THEN (A.DOOR_UNLOCK && A.OPEN_DOOR)

17 }

18 }

Fig. 4. Code snippets of the SmartDoor application.

EdgeProg obtains the optimal partition of the input IoT
application with full awareness of the user-perceived event
handling latency or energy consumption, including details
about the problem formulation and its solution algorithm.
Finally, we demonstrate how EdgeProg generates the appli-
cation code to be disseminated to both devices and edge
servers.

4.1 EdgeProg Programming Language
In order to tackle the problem of existing scattered program-
ming style and accelerate the application development pro-
cess, EdgeProg adopts a rule-based domain-specific
language (DSL) for developers to build their applications.
An EdgeProg application is typically organized as three
parts: configuration, implementation and rule. As shown in
Fig. 4, we use the SmartDoor application described in Sec-
tion 2.2 as an example to illustrate three critical features in
the following. More examples could be found in [14].

Edge-Centric Programming Model. In order to achieve the
edge-centric design goals of EdgeProg, our programming
model should focus users more upon the global behavior
other than implementation details. Hence, EdgeProg ena-
bles developers to organize their application centered with
the overall application logic using keyword Rule. There
exist several DSLs enabling developers to focus on upper
logic, as known as the macro-programming model, in sen-
sornet researches such as Kairos [15] and Regiment [16].
Nevertheless, existing works fall flat nowadays due to the
constraint on application portability or lack of actuation.
IFTTT programming shows its simpleness and effectiveness
in existing researches [3], [17], [18] when expressing the
high-level application logic, and this programming
approach is widely adopted in state-of-the-art industrial sol-
utions such as Samsung SmartThings and Microsoft Flow.
By early 2017, the website ifttt.com had gathered over
320,000 IFTTT programs [1] and the numbers are still
increasing dramatically. Therefore, we leverage an IFTTT-
like grammar for enabling users to express their idea in a
unified and explicit manner, as illustrated in lines 14-17 of
Fig. 4. Moreover, we augment the IFTTT grammar with
Configuration and Implementation to make users
express the detailed definition and specification of neces-
sary components used in the Rule part.

Full Support of Virtual Sensor. In order to accommodate the
intensive data processing in the nowaday IoT scenario, we

enhance our DSL with the virtual sensor. Traditional hard-
ware sensors generally produce raw measurements of physi-
cal properties such as the moisture value or light intensity,
which are unprofitable unless being transformed into high-
level domain-dependent information. Furthermore, captur-
ing valuable information usually requires the coordination
of multiple hardware sensors, e.g., detecting fire hazards
with both temperature and smoke sensor. In order to tackle
the limitations above and make sensor data processing more
flexible, existing works combine the readings of multiple
sensors for event detection. For example, SenseHAR [19]
advocates an activity recognition system that abstracts the
data of several inertial sensors from different devices using a
sensor fusion network. Similarly, LiKamWa et al. [20] mea-
sure the user’s mental state based on the interactions with
the smartphone. Virtual sensors act as a black-box providing
the indirect measurements or events, which are typically
physically immeasurable, by combining sensed data from
several hardware sensors with data processing algorithms.
EdgeProg embraces this technique as one of the extensions
to standard IFTTT syntax to provide easy-to-use yet expres-
sive handling for intensive data processing.

As shown in Fig. 4, lines 4-12 list the configuration of a
virtual sensor, VoiceRecog, to recognize whether the
input voice fragment produced by interface A.MIC stands
for “open” or not. This virtual sensor is a pipeline of two
stages: FE and ID. The algorithms employed by each stage,
specified by the keyword setModel (), are MFCC (Mel
Frequency Cepstral Coefficient) and GMM (Gaussian Mix-
ture Model), which are commonly used by voice recognition
systems [21], [22]. Currently, we implement 17 data process-
ing algorithms, including 12 for feature extraction and 5 for
classification. Although FE and ID are the compositions of
the typical pipeline, applications with more stages and par-
allel stages are also supported in our system, such as the
EEG seizure onset detection application described in [2].

Furthermore, there still a lot of complexity for green-
handed developers due to they may have no idea of which
sensors are strongly related to the expected output and how
they are related. To relieve this, we propose the inference-
agnostic virtual sensor. To construct it, developers could
merely provide the set of possibly related sensors and the
expected output of the virtual sensor, as Fig. 5 shows. Edge-
Prog will first generate a simple sampling application, and
developers should record the events they desired with it to
obtain enough training data. Then EdgeProg will train an
inference model which reflects the relationship between the
input sensors and the recorded events. Finally, the trained
model is partitioned and disseminated, similar to the other
virtual sensors.

Explicit Data Flow. According to our analysis on 101 com-
monly-used IoT applications from several popular develop-
ment websites such as DFRobot and Hackster.io, we find
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that about 45% lines of code in these projects are written for
data flow construction and interaction, which is a consider-
able proportion and increases the project complexity. Fur-
thermore, multi-device interaction makes the data flow
more complicated due to it is conceived in the network
packet construction.

In a typical IoT application, data flow starts from the pro-
duction of sensor data, processed by several algorithms,
then finally saved in the database or turned into a command
back to the actuator IoT node. Hence, we make the data flow
explicit in these three steps. For data production and final
actuation, as illustrated in lines 2-4 of Fig. 4, developers
specify the data and available actions as interfaces. For
example, line 3 illustrates that three interfaces (microphone
sampling, door unlocking and door opening) of a Raspberry
Pinamed A are used in this application. The available inter-
faces of specific hardware are determined by its vendor or
prototype developer. For data processing, virtual sensors
and rules directly use or call the interfaces, which results in
a unified and explicit data flow.

4.2 Code Partitioning

The goal of EdgeProg’s code partitioning sub-system is to
divide the user input into appropriate stages and to obtain
the optimal placement of each stage. To accomplish them,
we first preprocess the user input application into logic
blocks, which represent the computation stages, and gener-
ate a data flow graph of the rules to obtain a full view of the
user logic as well as the stage dependency. Afterward, as
cost-aware is one of the design goals of EdgeProg, we both
formulate the latency minimizing problem and energy sav-
ing problem into a mathematical expression, then we
employ an efficient solver to obtain the optimal placement
of each stage.

The key insight of our partitioning algorithm is that we
push the computation close to the data source as much as
possible and make the best use of the computation ability of
each device to achieve latency reduction. Moreover, the
optimal placement that exhibits favorable computation-
transmission tradeoff could be obtained by EdgeProg
benefited from the intrinsic global view of our program-
ming language.

4.2.1 Logic Blocks and Data Flow Graph Construction

Due to the compact nature of our programming language,
there are mainly two gaps that prohibit us from further
implementation and optimization. (1) Some stages may be
implicitly defined and used in the application. For example,
in Fig. 4, the interface LIGHT_SOLAR of device B is refer-
enced in the rule. Thus the stage of sensing it is necessary
but being conceived from the application. (2) The topologi-
cal information is necessary for optimization, which is also
implied in the application.

To fill up the gaps, we construct a data flow graph of an
application whose nodes are represented with logic blocks. A
logic block is supposed to be expressive enough as an inde-
pendent building block of the application, i.e., it should con-
tain adequate information such as placement, algorithm and
necessary parameters for time profiling as well as its input
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#1: <SAMPLE(MIC), A>;
#2: <MFCC(1), ?>;

#3: <GMM(2, “open.gmm”), ?>;

#4: <SAMPLE(LIGHT_SOLAR), B>;
#5: <CMP(2, 100, <), ?>;

#6: <CONJ(3, &, 5), 7>;

#7: <AUX(DOOR_UNLOCK), ?>;

#8: <ACTUATE(DOOR_UNLOCK), A>;
#9: <AUX(OPEN_DOOR), ?>;

#10: <ACTUATE(OPEN_DOOR), A>;

C) Movable Block
@

Fig. 6. An illustration of EdgeProg logic flow and logic block of Smart-
Door application.

Pinned Block

source for code generation. Hence, the logic block is defined
as a tuple < functionality, placement>, as shown in Fig. 6.

e  Functionality. To express the functionality, we bor-
row the idea of tasklet primitives from Tenet [23]
such as SAMPLE, ACTUATE and CONJ, which provide
building blocks for a wide range of data acquisition
and processing tasks. Nevertheless, we further add
the algorithms as primitives (e.g., GMM) to accommo-
date the virtual sensor deployment. The data source
of a logic block is declared as the first argument of
the primitive.

e  Placement. There are two kinds of code blocks in
EdgeProg: pinned and movable. The pinned blocks are
generally physical-constrained functionalities. For
example, SAMPLE must be placed on the device.
Moreover, there are also logical-constrained func-
tionalities. For example, the CONJ is pinned to edge
server to avoid unnecessary device-to-device traffic,
which will lead to sub-optimal partition. Hence, the
placement is fixed for a pinned block, and we use its
corresponding device alias in the logic block. The
placement of a movable block, which is potentially
deployed on the device or edge server, is denoted
with the question mark to express the uncertainty.

Generally, the logic blocks could be inferred from the

EdgeProg program. Taking the program in Fig. 4 as an
example, each stage of the VSensor in the implementation
part (i.e., FE, ID) is transformed to a logic block. Except for
these explicitly declared logic blocks, some blocks are also
necessary for a complete graph but implicitly conceived in
the user application. In order to complete the data flow
graph with the intrinsic blocks, we analyze all the rules
defined in the Rule part with the following strategies:

e For conditions exploiting virtual sensors in the IF
statement, we refer to the Implementation part to
obtain the staging pipeline and insert SAMPLE blocks
for the input.

e For conditions that only compare sensor values, we
convert it into two stages: SAMPLE and CMP.

e We use a CONJ block representing the conjunction of
all the conditions in the IF statement.

e For each action in the THEN statement, we use two
blocks: an auxiliary movable block AUX representing
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it is edge-triggered or local-triggered and a pinned
block ACTUATE representing the action.

Then the data flow graph could be constructed as a
directed acyclic graph (DAG) G(V, E) whose vertices repre-
sent the logic blocks and edges represent there exist a data
flow, as Fig. 6 illustrates.

4.2.2 Formulation of Optimal Partitioning Problem

With the help of the data flow graph G(V; E), we formulate
the optimal partitioning problem as a numerical optimiza-
tion problem. The resulting optimal partition could be
viewed as assigning each logic block to its most preferable
computational device. We would like to borrow the existing
code partitioning algorithm proposed in Wishbone [2] to
solve our problem.

e Node weights. The weights of vertices in the graph
represent the processing time or energy consump-
tion of the corresponding logic block. In EdgeProg,
the weight of a movable block is two-fold: the local
and edge-server processing time/energy. While in
Wishbone, each vertex in the graph only has one
weight.

e  Optimization goal. The optimization goal of Wishbone
is minimizing the sum of computational budgets and
network bandwidth. Nevertheless, EdgeProg focuses
on the cost of executing the application (i.e., latency
or energy), which makes the Wishbone formulation
no longer suitable for our problem.

In EdgeProg, we support two optimization goals: execu-
tion time or energy consumption of an edge-device inte-
grated application, and users could choose one of the goals
on their demand. We next present the formulation of
latency and energy optimization, respectively.

Optimizing Execution Time. Minimizing the task execution
latency leads to minimizing the length of the longest path in
the data flow graph. We define a full path of the data flow
graph G(V, E) as the path from a source vertex to a sink ver-
tex, denoted as 7. We use len(x), §(m) and II(G) to represent
the length of path 7, the number of vertices in path 7, and
the set of all full paths in graph G. Thus, our optimization
goal is thus denoted as

i l .
min ﬂrerhaé) en(rm) 1)

In order to further demonstrate len(x), we first introduce a
binary indicator X;,, to demonstrate the placement as

szz

i &

1 logic block b; is assigned to device s
0 logic block b; is not assigned to device s’

(2)

where s € 5;, and S; denotes the set of all possible devices
that could place the ith logic block (i.e., b;). Thus, the sum of
computing and transmitting latency across all possible
placements of a full path, len(r), could be expressed as

8(m)—
ZZXMT;,Q-F Z ZXbaXbls biss

i=1 seS; i=1 «S5;s'eSy

len(mw

3)
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where i, i’ are the adjacent vertices in path p (i.e., ¢/ =i+1).
We use Tbcs to denote the data processing cost of the ith
block on device s, and Tb .o to represent the data transmis-
sion time between block b; of device s and block by of device
s'. We assume that the data transmission time is negligible
if the two consecutive logic blocks are placed on the same

device. Thus we have

!
T;;V r = { [m—‘ e 4)
" 0 s=3¢

where ¢; denotes the data size being transmitted on edge (i, i’).
r;11, is a protocol-specific metric representing the maximum
packet payload of protocol k, e.g., the ;. of 6LowPAN net-
work is 122 bytes. Furthermore, the per-packet transmission
time is given by ¢;;/, which is profiled and predicted by our net-
work profiler detailed in Section 3.2.

Optimizing Energy Consumption. Different from the latency
formulation, optimizing energy consumption should con-
sider the costs of all the edges and vertices rather than con-
sider the longest path only. Thus, the optimization goal is
formulated as

V] 14

arg IIllIlZ Z Xy, éE'b st Z ZXb éXb/Q/Eb ss' (5)

i=1 ses; i=1 seS,;s'eSy

where |V] stands for the number of vertices in G(V, E). The
data processing energy EC and transmission energy E b
could be derived by

SS

B, = 15, o
Bl =T (PP 4 P

where PC stands for the average power (in mW) of device s
for computation. P/* and P/ represent the average power
for TX operation of device 5 and RX operation of device s/,
respectively. It is worth noting that, we only consider the
energy consumption of IoT devices. The energy consumed
by edge devices are ignored (i.e., P¢, P and PIX are set
to 0) due to the edge devices are mostly AC-powered.

4.2.3 Solution of Optimal Partitioning Problem

The objective formulations of EdgeProg optimization prob-
lem (i.e., Equs. (3) and (5)) are quadratic programming (QP)
problems, which are shown to be NP-hard [24]. The state-
of-the-arts employ heuristic algorithms to solve it effi-
ciently. For example, the most recent work [25] utilizes a
breadth-first greedy search algorithm to solve it. While we
prefer a solving method, which is less prone to local optima
and the method’s scalability against problem size is also a
necessary property.

Inspired by McCormick Envelopes relaxation [26], we re-
formulate the objectives and constraints of EdgeProg to con-
form to the formulation of integer linear programming
problem (ILP), which could be efficiently solved by the stan-
dard solver, e.g., 1p_solve. We compare the solving time
of the QP and ILP formulations in our technical report [14].
Results show that the ILP formulation is more scalable than
QP in terms of solving time.
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Take the latency optimization problem (Equ. (3)) of Edge-
Prog as an example. We first convert the quadratic objective
function to linear one by introducing an auxiliary variable
€iss = Xp,s Xyyo to replace the quadratic term X+ Xy in
Equ. (3). Moreover, the presence of ;s causes the introduc-
tion of these constraints

(Vie 8(p)—1,s€ Si,s'€Sy) €9 >0, (7

(Vie 8(p)—1,s€ 5,5 €Sy) €59 < X5, ®)

(Vi€ 8(p)—1,5€ S;,8'€Sy) €isy < Xip, o 9
(Vi€ 8(p)—1,5€ Si,s'€Sy) €y +12> X s+ X, .

(10)

It can be observed that all the above four constraints are lin-
ear. Whereas our objective function is still in a minimax
shape, which needs further transformation. We thus intro-
duce another auxiliary variable z and convert the inner max
function to a set of constraints to make it follow standard
ILP formulation. The rewritten ILP objective function is

Objective: arg;nin z (11)
Subject to:
8(n) 8(m)—1
22 Y N X T8+ DD Ty, VTG
i=1 seb; i=1  &5;5eS,
(12)

Furthermore, we add constraints for X, to ensure each
logic block is appointed to a specific device.

> Xy =1Vied.

s€S;

(13)

Thus, any optimal solution of Equ. (11) subject to (7), (8), (9),
(10), (12) and (13) will be the optimal partition of the input
application.

Similarly, the objective of energy optimization problem
(Equ. (5)) is transformed as

Vi [V

arg min Z Z Xy, bE + Z Z eiss’EéLsU

i=1 ses; =1 s5;5'eSy

(14)

along with the formulations of Ep and E,fv .+ (Equ. (6)), and

the constraints similar to Equs. (7) (8), (9), (10) and (13).

4.3 Executable Generator

The executable generation process in EdgeProg contains
two steps: (1) constructing pieces of compilable code from
the optimal partition and the logic blocks, and (2) compiling
the code to platform-specific executables.

Benefited by the cross-platform nature of Contiki OS , we
could generate the code for the edge server (mostly Linux-
compatible hardware) as well as sensing devices in a similar
manner. Then EdgeProg compiles them using the platform-
specific toolchains provided by Contiki based on msp430-
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1 PROCESS_THREAD (condl_process, ev, data) {
2 static struct etimer et_condl;
3 PROCESS_BEGIN(() ;
4 etimer_set (&et_condl, COND1_INTERVAL) ;
5 while (1) {
6 PROCESS_YIELD () ;
7 if (etimer_expired(&et_condl)) {
8 (do the jobs of logic blocks)
9 process_post (&send_process, send_evt, &
to_sendl);
10 etimer_reset (&et_condl);
11 }
12 }
13 PROCESS_END () ;
14 1}

Fig. 7. Code snippets of the functioning process of EdgeProg.

gcc for TelosB and gcc-linaro-arm for Raspberry Pi.
The only difference our generator should take care of is the
different libraries included and sampling APIs used for dis-
tinct platforms. Hence, we focus on how to generate compil-
able code that runs efficiently.

As we mentioned in the last section, the logic blocks are
designed to be expressive enough to act as a building block
of an application, and hence they are transformed to a func-
tion into the final compilable code. The most difficult issue
is how to organize the function calls in the generated code.
The intuitive approach to accommodate the event-driven
kernel and the protothread technique of Contiki OS is to
arrange all the logic blocks assigned to the same placement
in a protothread and send/receive data if the next block is
assigned to another device. This simple design raises perfor-
mance drawbacks. The generated protothread could be too
long with this design, which degrades the system perfor-
mance due to the non-preemptive scheduling of Contiki."
Generating one protothread of one block is also not efficient
because short protothread incurs much process switching
overhead, which will also harm the performance.

Our approach is based on a code template of Contiki
necessaries and a send thread with receive callback. The func-
tioning protothreads are generated from graph fragments of
the optimized DAG, and the code snippet is illustrated in
Fig. 7. The fragments of each device are obtained by leveraging
a depth-first traverse of the logic blocks of the DAG which
ends at the placement-changing point. Then we assemble a
protothread with one fragment by calling functions of the logic
blocks. At the end of a thread, it issues an event to the send
thread (e.g., line 9 of Fig. 7) for data transmission and yields
for other threads. Moreover, based on our time profiling, the
graph fragments could be further segmented if it contains sev-
eral time-consuming tasks for system health.

5 EVALUATION

In this section, we evaluate the performance of EdgeProg in
various aspects.

5.1 Experiment Setup
First, we introduce the benchmarks we used and baselines
we compared in our evaluation.

1. Contiki supports preemptive multi-threading as an optional
library, while it requires additional multiple stack allocation which is
stressful for low-end devices such as TelosB. Hence we do not adopt
this scheme.
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TABLE 1
Implemented Benchmark Applications
Name Application Sensor # Operators Algorithms
Sense Outlier Detector [27],[28] = Temp., Light 8 Average, Matrix multiplication, LEC compression
MNSVG  Weather Forecasting [3] Temp., Humidity 4 MNSVG
EEG Seizure Onset Detect. [29] EEG 80 Wavelet decomposition, SVM
SHOW Smart Handwriting [30] Accel. 13 FFT, Random forest
Voice Speaker Count [31] MIC 10 MECC, Pitch estimation, Unsupervised clustering

Benchmarks. We summarize the five macro-benchmarks
to evaluate our EdgeProg in Table 1: two sensing applica-
tions and three real-world applications. The #operators col-
umn in Table 1 indicates the number of operational logic
blocks of each benchmark.

e Sense. A common sensing application with outlier
detection using algorithms proposed in [27] and
data compression using the LEC algorithm [28].

e MNSVG. A weather forecast application using an
MNSVG model proposed in [3] to predict tempera-
ture and humidity values.

e EEG. Using the EEG signal to detect seizures [29],
taken from Wishbone [2]. It employs ten parallel
channels to process the EEG signal with seven order
wavelet decomposition in each channel.

e SHOW. Detecting and classifying the trajectory of the
device with IMU information and random forest
algorithm [30].

e Voice. Counting the number of speakers with signal
processing and clustering algorithms [31].

Baselines Definition. Here we describe the state-of-the-art

edge(cloud)-device interactive system alternatives that we
use to illustrate the advantages of EdgeProg.

e RT-IFTTT [3]. The server does all of the computation.
IoT devices only need to report the sensor value or
take actions under the server’s command.

o Wishbone(0.5, 0.5) [2]. Wishbone is a partitioning sys-
tem for sensornet applications whose goal is to mini-
mize a combined objective of CPU and network
workload, which could be formulated with two
weights as («CPU + BNet). Here (0.5, 0.5) stands for
a = B = 0.5, which indicates CPU and network are
of equal importance in this baseline.

e  Wishbone(opt.). During our preliminary experiment,
we notice that better latency performance could be
achieved by altering the o and g parameters. Hence,
we conduct evaluations by tuning the parameters
with 0.1 step, and record the best performance as
this baseline.

5.2 Latency Reduction

Fig. 8 depicts the task makespan of five macro-benchmarks
under Zigbee (on TelosB node) and WiFi (on Raspberry Pi)
network. We use a laptop with a 2.8 GHz i7-7700HQ CPU
and 16 GB memory as our edge server. EdgeProg achieves a
20.96% reduction on average across all settings, and up to
99.05% reduction in Voice benchmark compared with Wish-
bone(0.5, 0.5). Moreover, we have two main observations
according to the results:

(1) Speed up percentage varies considerably among
benchmarks. For example, EdgeProg surpasses the base-
lines for Voice and EEG benchmarks under both settings
while falls flat for MNSVG. This variation mainly due to the
computation complexity and network demands of each
benchmark. As illustrated in Table 1, EEG is the most com-
plex one with 80 operators, which promises a larger optimi-
zation space to reduce the latency. Furthermore, each order
of its wavelet decomposition halves input data, which
reduces the transmission time of its output and makes it
more profitable to local execution. Nevertheless, EdgeProg
struggles against SHOW with 13 operators under WiFi,
mainly due to the parallel layout of its operators, which
leads to fewer valid cut points to partition. As for MNSVG,
a small number of its operators results in its available cut
points is only three. Under this circumstance, EdgeProg still
captures the best cut point for ZigBee, which is neglected by
baseline methods. In summary, data-reduction algorithms
contribute more to latency reduction.

(2) EdgeProg under ZigBee network outperforms under
WiFi. Under the ZigBee network, EdgeProg reduces the
makespan by 30.96%, 45.80% and 18.19% compared with
three baselines, individually. Nevertheless, reduction per-
centages drop to 0.07%, 30.58% and 0.13% when using
WiFi. This is because the WiFi network is much faster
than Zigbee, which leads to a short networking time, and
the data processing time/energy becomes the dominant
fraction in the algorithm. Furthermore, the IoT device we
used for WiFi (Raspberry Pi) has better computing power
than the device we used for Zigbee (TelosB), which leads
to a smaller difference in the data processing performance
between the two partitions. Hence, among the bench-
marks, both the networking time and the computing time
become closer to the sub-optimal ones under WiFi. There-
fore, the optimization space of EdgeProg becomes smaller
under WiFi network, which finally causes a smaller perfor-
mance gain under WiFi than Zigbee. It is worth noting
that although the performance of each approach is close to
each other under WiFi, EdgeProg always obtains the opti-
mal partition for each benchmark.

To further study the above observation, we established a
ground truth by exhaustively running each benchmark at
every available cutting points on our testbed. Fig. 9 illus-
trates the results. The star icons indicate EdgeProg’s choice
for the best cutting points. We can infer from the figures that
as the network speed grows, data transmission time
decreases and data processing time becomes dominant.
Hence, optimization algorithms prefer to offload tasks at
early stages, which could be deduced from that the star icons
on WiFi bars are more to the left than ZigBee ones. Conse-
quently, the dominant strategies are more concentrated on
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Fig. 8. Latency measurements normalized to the worst-performed baseline. EdgeProg reduces the task latency by 18.2% compared with Wishbone
(opt.) and 31.0% with RT-IFTTT on average. The optimal range of « of Wishbone(opt.) for each benchmark is labeled on the top.
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Fig. 10. Energy consumption comparison results (normalized to the worst-performed baseline). Compared with Wishbone(opt.) and RT-IFTTT, Edge-
Prog saves the energy by 14.8% and 40.8% on average. The optimal range of « of Wishbone(opt.) for each benchmark is labeled on the top.

the left, which means the decrease of optimization space and
leads to closer performance among baselines.

5.3 Energy Saving

Besides latency, EdgeProg could also optimize the energy
consumption. The experiment setup is similar to the ones in
Section 5.2, and we use the Monsoon Power Monitor to mea-
sure the energy consumption. As we specified in Section 4.2.2,
we do not consider the power consumed by edge devices
because they are mostly AC-powered. Fig. 10 illustrates the
evaluation results under Zigbee and WiFi networks. Edge-
Prog achieves 31.48% overall energy saving on average across
all settings, and up to 98.38% reduction in Sense benchmark
compared with RT-IFTTT under Zigbee network. We also
observed that EdgeProg performs better under Zigbee

network (51.60% average reduction) than WiFi (11.37%), and
the reason is similar to the latency in Section 5.2.

Nevertheless, there are also some situations that Edge-
Prog seems to make no optimization to the latency or energy
(e.g., the SHOW benchmark in Fig. 8a). The reason of Edge-
Prog achieves no optimization in certain benchmarks is that
the comparing baselines have already achieved the optimal
performance (i.e., these methods partition the application in
the optimal way) in those situations. However, EdgeProg
shows its generality for achieving optimal solutions under
different setups (i.e., different optimization goals, applica-
tion structures, etc.). For example, although the baselines
reach the optimal partition for the SHOW benchmark under
Zigbee network, only EdgeProg achieves the optimal solu-
tion for SHOW benchmark under WiFi network, as shown
in Figs. 8b and 10b.
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TABLE 2
Dissemination Size Among Platforms (Byte)
App. TelosB MicaZ Raspberry Pi
Sense 4,344 6,384 4,004
MNSVG 2,756 3,460 2,280
EEG 4,500 6,276 3,920
SHOW 22,952 28,660 14,540
Voice 32,076 42,416 19,336

Furthermore, according to the results, we found that the
optimal range of « (i.e., &*) for Wishbone(opt.) varies among
benchmarks and optimization goals (latency, energy). Wish-
bone [2] claims that its objective «C'PU + BNet could be a
proxy for meaningful objectives such as energy, but the per-
benchmark variation of «* makes it difficult to take advan-
tage of Wishbone in practice. More specifically, besides the
optimization goal, the o* is influenced by the task type and
device characteristic. 1) Influence of tasks type. For example,
in Fig. 8a, the «f,,, (" of Sense benchmark) tend to be
small while the o}~ is 1 when minimizing latency. EEG is
a computational-intensive benchmark that contains 80 oper-
ators of complex algorithms such as Wavelet decomposition
(see Table 1), while Sense is a network-intensive application
whose computations are simple (e.g., average). Hence, the
large oy and small «f,, ., are reasonable because the com-
putation of EEG is important while network is vital for
Sense. 2) Influence of device characteristics. The o}, changes
from small in Fig. 10a to big in Fig. 10b. This is because the
network change from Zigbee to WiFi significantly reduces
the inter-block transmission time of EEG, which makes the
computation the dominant factor in the optimization.
Unlike Wishbone, EdgeProg provides optimization goals
with clear physical meaning which stay unchanged what-
ever the optimization task is, which makes EdgeProg more
useful in practice.

5.4 Overhead
Dissemination Overhead. The dynamic linkable and loadable
binary sizes of the macro-benchmarks on three platforms:
TelosB (TI MSP430), MicaZ (AVR ATMegal28) and Rasp-
berry Pi 3B+ (ARM Cortex-A53) supported by EdgeProg is
summarized in Table 2.

We can see from the data that the binary size of SHOW
and Voice is much bigger than other benchmarks, which is
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mainly due to the complexity of the algorithms they
adopted such as FFI, MFCC. Nevertheless, EEG has a
smaller size compared with its large number of operators,
which is mainly due to each of its tunnels shares the same
procedures, and each procedure mainly contains one algo-
rithm, wavelet decomposition, with different parameters.

Run-Time Efficiency. In this section, we compare the run-
time efficiency of the dynamic linking and loading technique
with its alternatives: virtual machines (VMs) and scripting
languages. To eliminate the inherited overhead brought by
different implementations, we use five micro-benchmarks
from Computer Language Benchmark Game (CLBG). CLBG
is a language benchmark suite maintained by the Debian
community. The five benchmarks we excerpted are
Fannkuch problem (FAN), https://github.com/Byron/
benchmarksgame-cvs-mirror Matrix multiplication (MAT),
http://attractivechaos.github.io/plb/ Meteor predicting
(MET), N-Body solution (NBO), and Spectral-Norm calculat-
ing (SPE). We use CapeVM [8], a state-of-the-art Java VM
developed for lightweight execution on embedded devices,
as the representative of the VM technique. CapeVM proposes
various optimization strategies to accommodate different
applications, and we set up the experiment with three set-
tings: no optimization, only peephole optimization and all
optimizations. Moreover, we choose two scripting languages:
Python (for popular) and Lua (for lightweight) along with
Java, which is used in CapeVM, as our design alternatives of
scripting languages.

Fig. 11 illustrates the experiment result. Due to CapeVM
do not support multidimensional arrays and floating points,
the MET benchmark could not be implemented with
CapeVM. As shown in Fig. 11a, the VM method introduces
a massive loss of run-time efficiency. VM costs more than
EdgeProg when executing the same benchmark by 9.98x on
average and up to 31.32x. As for scripting languages and
native Java illustrated in Fig. 11b, EdgeProg’s dynamic link-
ing and loading technique still outperforms than alterna-
tives. Python incurs the most overhead averaged 30.96x
and Lua, being famous for its lightweight, still slows by
6.37x than ours.

5.5 Programming Language

In order to compare the reduction of lines of code via Edge-
Prog, we compare the lines of code of the macro-bench-
marks described in Section 5.1 written in traditional
Contiki-style and EdgeProg-style. Fig. 12 illustrates the
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®© _
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(b) Compare with scripting languages

Fig. 11. Run-time efficiency comparison between EdgeProg and design alternatives.
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Fig. 12. Lines of code comparison between Contiki and EdgeProg. The
"Logic”, "Network” and "Others” represent the lines of code for express-
ing core application logic, inter-device network and others such as defini-
tion and included headers in Contiki source code.

comparison results. Note that due to EdgeProg provides sev-
eral data processing algorithms in advance to simplify the
development procedure, we omit the lines of code for imple-
menting the algorithms in Contiki-syle source code to
achieve fair comparison and focus more on how EdgeProg
helps for complex device interactions. We can observe that
(1) EdgeProg reduces the lines of code by 79.41% on average.
This is because EdgeProg relieves users of writing complex
inter-device interactions and other grammar necessaries.
Moreover, the virtual sensor and IFTTT abstraction contrib-
ute to the lines of code reduction for application logic. (2)
EdgeProg reduces the development complexity, especially
for applications with more devices. For example, the 80
stages of EEG application consists of 10 EEG devices, and
each device owns eight stages. Programming ten devices
increases the lines of code multiple times. While the rela-
tively low reduction percentage of MNSVG (75.68%), SHOW
(67.86%) and Voice (72.94%) applications are partly because
they need only one device and an edge device.

5.6 Profiling Accuracy
The correctness and accuracy of EdgeProg’s latency-effec-
tive partition depend on the profiling method. In this sub-
section, we evaluate the accuracy of profiling methods for
both high- (e.g., Raspberry Pi) and low-end (e.g., TelosB)
devices that we employ in EdgeProg.

We use mspsim to profile the applications of TelosB, and
a near cycle-accurate simulator gem5 for modern platforms
such as Raspberry Pi. For gem5, we use the system call emu-
lation (SE) mode with the compiled binary as input to avoid
the additional overhead of its full-system mode. The results
are shown in Fig. 13. mspsim could achieve 90%+ accuracy
over 97.6% of test cases. Nevertheless, only 87.1% cases of
gemb5 reach 90%+ accuracy, which is mainly due to the fre-
quency fluctuation of CPUs and background processes of
Raspberry Pi.
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Fig. 13. Profiling accuracy of high-/low-end devices.
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6 DiISCUSSION

In this section, we discuss several important open issues of
EdgeProg.

Dynamic Evolving Scenario of EdgeProg. Partitioning the
application is not a one-shot job in real-world deployments.
The optimal partition may change due to the disturbance of
wireless network or even device breakdown.

EdgeProg supports the dynamic partition update during
run-time. The environmental variation is captured by our
network profiler deployed on the edge device (Section 3.2).
EdgeProg periodically checks if the environmental variation
leads to sub-optimal performance for a certain length of
time (i.e., tolerance time), EdgeProg will start the partition
updating process. The updating process includes compiling
the platform-specific binary and dispatching binaries to
devices for reprogramming. Users could adjust the environ-
mental sensitivity of EdgeProg by setting the appropriate
tolerance time in case of frequent updating that brings high
reprogramming overhead.

Energy Drain of the Loading Agent. The loading agent in
EdgeProg communicates with the edge server periodically
(i.e., heartbeat) to check if there is a new binary to load and
execute. When there is a new binary, the loading agent
downloads the binary and loads it. Hence, the energy con-
sumption of the loading agent is two-fold: periodical heart-
beat and binary load. Inspired by [32], we build an
analytical model and illustrate the energy impact of the
loading agent in Fig. 14. We leave the model formulation
and to our technical report [14] due to the limited space. We
set the battery capacity to 2200 mAh, and assume new bina-
ries are generated every ten days. We can see from the
figure that the heartbeats indeed affect the battery lifetime.
The loading agent leads to a 14.5% and 26.1% decrease of
Voice benchmark when the heartbeat interval is 120s and
60s, respectively. Hence, considering the tradeoff between
timeliness of binary loading and the energy drain, we set
the heartbeat interval to 60s in our implementation by
default, and we allow users to modify the interval to meet
their individual needs.

Limitations of EdgeProg Language. Although EdgeProg lan-
guage shows its simplicity and expressiveness in our evalu-
ation, it still owns two limitations:

(1) Limited support for implementing new peripheral
libraries. The software library (e.g., the Light Solar library
of TelosB in line 4 and GMM library in line 10 of Fig. 4) is
one of the key components of EdgeProg’s language and
block-based data flow representation. In the current imple-
mentation of EdgeProg, the common peripheral libraries
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and 17 data processing algorithms for virtual sensors on
four platforms (TelosB, MicaZ, RPI and PC) are included in
EdgeProg as we noticed in Section 4.1. We are working on
the porting tutorials and code templates for implementing
new libraries for peripherals and platforms. (2) Algorithms
with feedback. The applications written with EdgeProg lan-
guage finally transformed into a DAG for optimization,
which introduces a restriction that the algorithms with feed-
back could not be expressed by EdgeProg language. The
rationale behind this limitation is the feedback may incur
directed cyclic graph (DCG), which is not solvable under
our current formulation. We do not take the DCG into con-
sideration temporarily is because: a) the DAG representa-
tion is widely adopted by the state-of-the-art distributed
computation systems (e.g., Apache Storm), and b) consider-
ing DCG would incur additional solving overhead, which
will affect the run-time efficiency of EdgeProg. We consider
generalizing the formulation of EdgeProg to support more
kinds of application topologies as our future work.

Time and Energy Profiling. In EdgeProg, we gather the
time and energy information of each logic block by leverag-
ing cycle-accurate simulators. This method achieves fair
accuracy (results shown in Fig. 13) when the hardware
parameters (e.g., frequency and existing workload of MCU)
of the deployment environment is similar to the simulation,
which is common in IoT scenario because the devices
mostly operate under a certain performance level [33].

Nevertheless, the auto-scaling technique in the modern
high-end edge server brings hundreds or thousands of per-
formance levels, which makes it painful to profile the per-
formance under each hardware parameter setting. Towards
this situation, we consider generating the full profile with
incomplete data through the efficient learning-driven pre-
diction algorithm [34]. Moreover, we also consider integrat-
ing the time estimation against different current workloads
proposed in [35] on edge devices to further improve the
profiling accuracy of EdgeProg.

7 RELATED WORK

EdgeProg borrows heavily from existing works. In the fol-
lowing paragraphs, We discuss three main categories: IoT
application programming, code partitioning and offloading,
as well as edge computing.

IoT Application Programming. The traditional approach for
IoT programming is device-centric [36] , i.e., the application
logic resides on the IoT devices. For example, developers
may write application-specific sensor data processing or
multi-hop forwarding based on IoT operating systems such
as TinyOS or Contiki OS.

To simplify application programming for multi-device
interaction, developers can adopt trigger-action program-
ming like IFTTT on edge/cloud servers so that the whole
app logic resides on the server. The IoT nodes perform gen-
eral functions like sensor data sampling and data transmis-
sions. IFTTT programming is widely adopted in the
industry, such as Samsung SmartThings and Microsoft
Flow. It also attracts a lot of research attention from acade-
mia [3], [17]. For example, a recent work, RT-IFTTT [3],
enhances the traditional IFTTT syntax. RT-IFTTT’s key idea
is to dynamically adjust the sensor data polling intervals to
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satisfy both energy and real-time constraints. EdgeProg
inherits from IFTTT’s server-centric programming model
but differs from existing works in two important ways.
First, we enhance the IFTTT syntax with special consider-
ation on data-intensive computation. Second, we enable
much more flexible server-device cooperation by support-
ing code partitioning and dynamic code loading on the
device, compared with RT-IFTTT which only supports
adjusting data sampling intervals.

In retrospect, a similar work to ours is Tenet [23] in the
sensor network literature. Tenet assumes a two-tier network
architecture consisting of ordinary sensor nodes and master
nodes. Tenet’s principle is to place the application-specific
logic on the master tier using a dataflow program. The mas-
ter nodes can dynamically task sensor nodes to process data
locally. In EdgeProg, the edge server plays an equivalent
role to the master nodes. EdgeProg differs from Tenet in the
language design, device-side system support, and perfor-
mance optimizations.

Code Partitioning and Offloading. Code offloading to het-
erogeneous IoT nodes needs system support at the device-
side. A virtual machine is a common approach to mask het-
erogeneity. There is rich literature in designing flexible and
efficient VMs on resource-constrained nodes, including
Mate [7], CapeVM [8], JVM, etc. In addition, a large number
of offloading algorithms builds on top of VMs, e.g.,
Tenet [23], ASVM [37]. Besides VM, there are other more
lightweight approaches such as Linux containers, RPC [38],
loadable modules [39]. We adopt the loadable module
approach in EdgeProg. This is because execution efficiency
is critical for energy-constrained IoT nodes and native code
runs much faster than VM instructions [5], [6].

There is rich literature in code partitioning and offload-
ing algorithms for performance optimizations. LEO [40]
presents an offloading algorithm targeting mobile sensing
applications. LEO makes use of domain specific signal proc-
essing knowledge to smartly distribute the sensor process-
ing tasks across the broader range of heterogeneous
computational resources of high-end phones (CPU, co-pro-
cessor, GPU and the cloud). LEO achieves fine-grained
energy control by exposing internal pipeline stages to the
scheduler. Queec [38] takes the user-perceived quality of
experience (QoE) into offloading decision and makes efforts
to achieve the lowest latency. EdgeProg shares similarities
with many existing algorithms to optimize performance
metrics such as latency or energy. However, EdgeProg uses
a different formulation considering multiple rules execu-
tion, cached values, and concurrent execution on different
IoT nodes.

Also, there are a variety of efforts concerning the parti-
tioning and deployment of DAG-represented applications.
Wishbone [2] presents a code partitioning algorithm among
resource-constrained sensor nodes and the server to process
data-intensive applications by cutting the unnecessary
edges of the DAG. P-EDF-omp [41] proposes a DAG parti-
tioning algorithm to schedule tasks across multiple process-
ors while keeping the hard real-time guarantee for OpenMP
applications. Moreover, Storm is a widely used analytic
framework, and its application is constructed using DAG.
HeteroEdge [42] focuses on partitioning and scheduling the
Storm applications between CPUs and GPUs to achieve
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better latency. Different from the above literature, the DAG
partitioning algorithm of EdgeProg considers the weights
on both vertices and edges, which further leads to a differ-
ent formulation and solution.

Edge Computing Systems. EdgeProg runs on existing edge
platforms and focuses on programming IoT nodes con-
nected to the edge. Most existing work [43], [44] of edge
computing focuses on how to program the edge itself. In
ParaDrop, the edge service deployment is initiated and con-
trolled by a cloud server. ParaDrop employs the container
technology for the concurrency and isolation between edge
services.

Considering the coordinated programming for both the
edge and nodes, the most similar and recent work is
DDFlow [45]. Its idea borrows from the existing macro-pro-
gramming approach [15], which aim to build applications
in the whole network point-of-view (POV) rather than per-
node POV. DDFlow presents a visual programming inter-
face for developers to state their application as a task graph.
EdgeProg employes a more declarative way with a domain-
specific language rather than graphical programming, and
achieves the lowest latency even in the multi-rule situation
while DDFlow only considers optimizing one application
per time.

8 CONCLUSION

This paper presents EdgeProg, an edge-centric program-
ming system with automatic code partitioning. In Edge-
Prog, we provide developers, especially non-experts, with
an easy-to-use yet expressive programming language. Build
upon the global view of our language, the code partitioner
finds the best placement for each part of the application
through an ILP formulation, which could be efficient and
optimally solved. The key insight is that we make the best
use of the computation ability of each device to achieve bet-
ter performance. Evaluations show that EdgeProg could
reduce the task execution latency by 31.65% for ZigBee net-
works and 10.26% for WiFi networks. For energy, EdgeProg
saves 14.8% and 40.8% on average compared with state-of-
the-arts. Also, EdgeProg reduces the lines of code by
79.41%.
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