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ABSTRACT
Web applications are increasingly becoming the primary plat-
form for AI service delivery, making in-browser deep learn-
ing (DL) inference more prominent. However, current in-
browser inference systems fail to effectively utilize advanced
web programming techniques and customize kernels for var-
ious client devices, leading to suboptimal performance.
To address the issues, this paper presents the first in-

browser inference system, nn-JIT.web, which enables just-
in-time (JIT) auto-generation of optimized kernels for both
CPUs and GPUs during inference. The system achieves this
by using two novel web programming techniques that can
significantly reduce kernel generation time, compared to
other tensor compilers such as TVM, while maintaining or
even improving performance. The first technique, Tensor-
Web Compiling Co-Design, lowers compiling costs by unify-
ing tensor and web compiling and eliminating redundant
and ineffective compiling passes. The second technique,Web-
Specific Lite Kernel Optimization Space Design, reduces kernel
tuning costs by focusing on web programming requirements
and efficient hardware resource utilization, limiting the opti-
mization space to only dozens.

nn-JIT.web is evaluated for modern transformer models on
a range of client devices, including the mainstream CPUs and
GPUs from ARM, Intel, AMD and Nvidia. Results show that
nn-JIT.web can achieve up to 8.2× faster within 30 seconds
compared to the baselines across various models.

1 INTRODUCTION
Web applications are increasingly becoming the primary
means to deliver AI services, such as ChatGPT [2], StableDif-
fusion [4], Web LLM [23] and the suite of AI services within
M365 for Web [3]. This AI deployment shift is attributed to
the compelling advantages of Web applications, including:
cross-platform execution, that a Web application can run on
any device with a browser ; click and run deployment, with
no need for installation; and simplicity of maintenance, that
application updates can be timely available to users.
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With such shift, there is the surge in interest towards
performing DNN inference directly within Web browsers,
i.e., in-browser inference. In-browser inference can provide
a more responsive user experience and enhanced privacy
protection by avoiding round-trips to the cloud, as well as
reduce the expense of cloud computing resources for serving
a large number of clients. In-browser inference is made viable
by the continuous advances inWeb programming techniques,
such as the recently introduced WebAssembly (abbreviated
Wasm) [5] and WebGPU [8], as well as the fast-growing
computing capabilities of client devices.
However, current in-browser inference systems, such as

TensorFlow.js[29], ONNX Runtime Web[32], WebDNN[6],
and brain.js[1], suffer from two major drawbacks, leading
to inferior performance. Firstly, these systems lag behind
advanced web programming techniques, as they require
handwritten kernels for each web programming backend
e.g., JavaScript, Wasm, WebGL[7]. Integrating a new back-
end necessitates significant rewriting efforts, resulting in
limited support for emerging technologies like WebGPU[11].
Secondly, their predefined kernels do not account for hard-
ware diversity, causing a one-for-all approach that delivers
poor performance across various client devices. As we will
show in the paper, our proposed device-customized kernels
demonstrate a potential speed-up of several times.

To address these challenges, tensor compiling techniques
such as TVM[10], Ansor[34] and FlexTensor [35] can be em-
ployed to automatically generate customized kernels without
manual efforts. However, tensor compilers necessitate ahead-
of-time kernel generation for known hardware, due to the
hours even days of kernel generation cost and the require-
ment of on-device kernel evaluation. This approach is more
practical for limited target devices, such as those in cloud
environments. Unfortunately, Web applications are inten-
tionally designed to operate on a wide range of hardware and
software environments, encompassing diverse CPUs, GPUs,
and OS. Generating kernels ahead-of-time for each hardware
is impractical. Therefore, achieving optimal in-browser in-
ference performance for each client device without manual
intervention remains an unresolved challenge.
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To tackle it, we rethink the specialties of Web. Compared
to native inference systems, in-browser inference offers the
distinct advantage of online kernel updating. Furthermore, in-
browser inference typically runs repeatedly over an duration,
such as for video and document processing. This distinctive
feature provides the opportunity and time budget for just-
in-time (JIT) kernel customization after encountering the
actual device.
Based on this insight, we present nn-JIT.web, the first

in-browser DNN inference system with the unique ability
to automatically generate and continuously improve cus-
tomized kernels during inference for target devices, leading
to a gradual speedup towards optimal performance. Both
CPU and GPU are supported through generating kernels
in the state-of-the-art (SOTA) Web programming interfaces
respectively, i.e.,Wasm for CPU and WebGPU for GPU.
To realize this system, the key challenge lies in enabling

JIT generation of optimized kernels, a feat that has never
been accomplished before. Current tensor compilers perform
compiling and kernel tuning processes to identify reasonable
kernels. Tensor computations are implemented as nested
multi-level loops to compute each tensor element. Various
loop arrangements, such as different tiling sizes, unrolling
factors, and loop orders, result in a kernel optimization space.
The kernel tuning process iteratively selects and evaluates
potential candidates from this space to find optimal ones. The
evaluation of each candidate invokes the compiling process
to generate executable codes and run on the target device.
As discussed in related papers [21, 36], the lengthy time

required to generate optimized kernels is due to 1) the compil-
ing cost and 2) the vast kernel optimization space. Compiling
each candidate can take minutes, as numerous transforming
passes are needed for both tensor level and target language
level, e.g., Wasm. The extensive optimization space prolongs
the kernel tuning process in searching for reasonable candi-
dates. To reduce the space, Romou[21] eliminates candidates
that overuse hardware resources. Although this approach
can reduce the space by 99%, the number of remaining candi-
dates is still on the order of 10K. Roller[36] selects promising
candidates by building a hardware performance model for
known hardware, which is impractical for the diverse client
devices found in Web environments.

nn-JIT.web can facilitate JIT generation of optimized ker-
nels based on our key findings of Web programming, that
can reduce the compiling cost and kernel optimization space.
1) Web programming interface is designed with simple in-
struction sets and execution model for running efficiency
and security, which does not require complex compiling op-
timizations. Moreover, mostly compiling optimizations for
Web programming interface are overlapped with kernel opti-
mization space, e.g., loop unrolling, rendering them unneces-
sary. 2) Strict Web requirements for security and portability

convey consistent performance pattern across devices, e.g.,
costly memory allocation. This consistency removes the need
for related candidates in the kernel optimization space to be
evaluated on target devices.
Based on the two findings, we propose two novel tech-

niques accordingly. The first is Tensor-Web compiling co-
design. TakingWasm compilation as an example. Rather than
the separated tensor-level and target-language (i.e.,Wasm)
level compiling, nn-JIT.web employs a unified compiling
pipeline from tensor IR (Intermediate Representation) di-
rectly to Wasm IR, which completely eliminates the required
invocation of LLVM Wasm backend or Emscripten [14] for
separated Wasm compiling. The unified pipeline co-designs
the tensor and Wasm compiling optimizations to avoid re-
dundant and ineffective ones. The optimizations in LLVM
Wasm backend is the best covered in the kernel optimiza-
tion space. Only the optimizations closely related to Wasm
instructions are kept to apply on theWasm IR. This new com-
piling pipeline dramatically reduces the cost per candidate,
from minutes to milliseconds.

The second technique isWeb-specific lite kernel optimiza-
tion space design, guided by two principles: Web program-
ming requirements and efficient utilization of hardware re-
sources. As Web requirements cause consistent performance
patterns across devices, to identify their impact on the ker-
nel optimization space, we compose a microbenchmark suite
that traverses the tensor compiling primitives (code trans-
formations conducted on tensor IR to generate kernels) such
as loop order and unroll, in a one-variable-at-a-time manner.
The suite is evaluated offline to identify the efficient primi-
tive configurations. This can reduce the space size to tens of
thousands. The hardware utilization is mostly decided by the
tile sizes of a kernel implementation. An efficient hardware
utilization requires the tile size to balance the contention
between improved parallel hardware execution and reduced
low-level memory accesses. This is inconsistent across hard-
ware depending on the hardware specs. We therefore use the
heuristic-based method to select promising tile sizes to be in
the kernel optimization space, to evaluate on the target de-
vice during JIT. By the guidelines, the number of candidates
in space is reduced to only dozens.

Based on the two techniques, we develop the nn-JIT.web.
After the initial model and kernels are downloaded to run on
the target client device, nn-JIT.web generates the lite kernel
optimization space. Candidates in the space are compiled one-
by-one using our unified compiling pipeline and evaluated on
the client device, interleaved with the inference process, with
limited overhead. Better kernels are continuously replaced
online, gradually approaching the optimal. Considering the
large number of clients on Web, candidate evaluation results
and generated kernels is also crowdsourced from ones with
similar hardware to achieve optimal kernels much faster.
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nn-JIT.web is implemented for both Wasm for CPUs and
WebGPU for GPUs. Wasm is already supported by main-
stream browsers, and CPUs are ubiquitous in client devices;
thus, we prioritize Wasm support. WebGPU, although still
in its early stages, shows great promise. Thanks to our JIT
kernel generation, nn-JIT.web is the first general inference
system that supports WebGPU for complex models, serving
as a strong showcase for our advantages.
nn-JIT.web is evaluated on representative transformer

models, with suitable size to run in-browser on client devices,
including encodermodel RoBERTa [22], encoder-ecodermodel
BART [20] and T5 [27], and decoder model GPT-2 [26]. Eval-
uation platforms cover a range of mobile and desktop hard-
ware, including ARM CPU (Cortex-A76 and A78), Intel CPU
(I9 12900H), AMD CPU (Ryzen 5800H), Intel GPU (HD 630),
AMD GPU (Radeon), and Nvidia GPUs (RTX 3050, 3000,
3070Ti). The results show that within 30 seconds, nn-JIT.web
can achieve average 26.65 times faster kernels compared to
the baseline, and 2.36 times faster model inference.

To summarize, our main contributions include:

• This paper proposes the first in-browser inference sys-
tem that enables JIT optimized kernel generation.
• The Tensor-Web compiling co-design avoids the in-
effective and redundant optimizations, reducing the
compiling cost from minutes to milliseconds.
• The Web-specific lite kernel space design is guided
by both Web programming requirement and efficient
utilization of hardware resource, reducing the opti-
mization space from millions to dozens.
• The evaluation is done on modern transformer models
and a range of client devices, achieving up to 8.2×
speedup, compared to SOTA inference frameworks.

2 BACKGROUND AND MOTIVATION
2.1 DL Inference in Web Browsers
Enabling DL inference in modern Web browsers is nontriv-
ial [24]. Due to the security considerations, the sandbox
mechanism is widely used within browsers, which isolates
Web applications, scripts, and other contents from the under-
lying system. The sandbox environment prevents malicious
code from accessing and modifying system resources and
settings, meanwhile it also restricts the usage of the sophisti-
cated native DNN inference libraries, such as Eigen [13] for
the CPU and cuBLAS [12] for the GPU.
To make DL inference in browsers possible, alternative

programming interfaces, hence backends, are proposed to
use. JavaScript [18] is firstly leveraged to implement DL ker-
nels and graphs in Web DL frameworks [29]. JavaScript has
no-static data type and no vectorization support. Although

Browser
Wasm Virtual Machine Web GPU

Wasm bytecode

Decoder Validator Executor

Execution 
Stack

Value types
INT/FP 32/64 SIMD128

CPU

WGSL

Validator Adaptor

Compiler
WGSL->        SPIR-V

->        native

Limitations
Max workgroup

…

GPU

Native GPU API
D3D, Metal, Vulkan, …

Driver

Figure 1: The Wasm and WebGPU support in browser.

some efforts like V8 Engine [15] could significantly acceler-
ate JavaScript code, the DL execution with it is still extremely
inefficient in JavaScript environment.
To cope with it, WebAssembly (Wasm) [5] is considered.

Wasm is a compact binary format. Its runtime is a portable
virtual machine running on the CPU. Fig. 1 shows the Wasm
implementation in browsers. Wasm code is delivered in low-
level bytecode, which can be decoded and executed more
efficiently in the virtual machine. The bytecode needs to
be validated for security. What’s more, Wasm also takes
advantage of advanced features of modern CPUs, e.g., Sin-
gle Instruction Multiple Data (SIMD). Therefore, it provides
much better inference performance than JavaScript. Wasm
is language-agnostic. High-level programming language like
C and C++ could be compiled into Wasm bytecode.

GPUs could also be utilized within browsers. For instance,
WebGL has been integrated in TensorFlow.js. WebGL pro-
vides a set of JavaScript interfaces to access GPU that origi-
nally enable rendering 3D graphics on Web pages. It is based
on OpenGL ES 2.0 [16], a subset of OpenGL [25]. Thus, cer-
tain functionalities are not available. Meanwhile, as a render-
ing library, it failed to utilize the computation pipelines in
modern GPUs due to limited instructions for computation.
To unleash the power of GPU, WebGPU, the successor

of WebGL, is proposed. In addition to graphics rendering,
WebGPU provides stronger computation ability, driving com-
putation intensive DL kernels to execute more efficiently.We-
bGPU Shading Language (WGSL) is used to program. Fig. 1
shows the implementation of WebGPU in browsers. While
running in browser, the WebGPU kernel is translated to na-
tive GPU APIs to run, such as Vulkan [31]. For portability,
WebGPU also specifies limitations for the hardware usage.
The validator is again to check the kernel for security.

Taking the advantages of the backends above, Web DL
frameworks including TensorFlow.js (TF.js) and Onnx Run-
timeWeb (Ort-Web), enable end-to-end in-browser inference
for pretrained DL models. They all have relatively mature
support for Wasm, and start to support WebGPU. The DL
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Figure 2: The normalized kernel latency of handwrit-
ten, pre-tuned, and our online-tuned MatMul kernels
([M,K,N]=[640,768,2304]) on eights devices.

kernels shipped within these frameworks are usually hand-
written or ported from native DL frameworks, e.g., Tensor-
Flow [28]. To optimize the kernels, DL compilers such as
TVM [10] are also extended to support generating and op-
timizing kernels implemented in Wasm and even WebGPU
automatically. However, generating kernels for Web usually
takes significantly long time, e.g., nearly 2 hours for one
Matrix Multiplication (MatMul) kernel. Besides that, the per-
formance of tuned kernels are almost far from the optimal.
We would discuss the issue in detail in the followings.

2.2 Inference Performance Issues
To understand in depth the DL inference performance in
browsers, we conduct the preliminary study, specifically we
measure the inference latency of a typical DL kernel, Mat-
Mul, to demonstrate the potential performance issues for DL
inference in browsers. We have the following observations:
The one-for-all kernels are suboptimal across de-

vices.Web applications are running on millions of devices
equipped with diverse hardware. Different hardware prefers
different kernel implementations. However, instead of design-
ing customized kernels for each type of devices, at present
the SOTA in-browsers inference frameworks deliver kernels
in the way of a one-for-all style. For instance, TF.js and ORT-
Web ship handwritten kernels on Wasm and WebGPU. We
execute the one-for-all MatMul kernels from TF.js, ORT-web
(only support Wasm), and pre-tuned AutoTVM (without tun-
ing on the target device) on AMD 5800H desktop CPU, ARM
Cortex-A78/A76 mobile CPUs, Nvidia 3000/3070Ti GPU and
Intel 630 GPU. The inference latency is illustrated in Fig. 2.
The results indicate the performance of pre-defined ker-

nels is suboptimal compared to our device-customized ker-
nels. Moreover, a single pre-defined kernel exhibits a wide
range of performance gaps on different devices. For instance,
the kernel from TF.js demonstrates a slowdown ranging from
as little as 2% to as much as 146% when compared to cus-
tomized ones. Similarly, without tuning, the generated kernel
from the tensor compiler TVM shows a slowdown of 19% to
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Figure 3: The generated MatMul kernel
([M,K,N]=[640,768,2304]) performance and gen-
eration time of TVM on AMD 5800H CPU.
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Figure 4: A common tensor compiler pipeline.

multiple times, depending on devices. These results highlight
the need for customized kernels tailored to each device.
The one-for-each kernels are currently impractical

in Web scenarios. Based on the measurements presented
above, one might consider generating kernels in a one-for-
each style. However, this solution remains infeasible. We
assessed the optimized kernel generation time of TVM for a
MatMul kernel on an AMD 5800H CPU device. It took nearly
2 hours to identify the kernel with the high performance (29.2
GFLOP/sec), with 437 tuning rounds. Typically, a deployed
model contains several tens of kernels. Clearly, the one-for-
each approach is impractical, particularly for Web scenarios
where client diversity is substantial.

The prolonged optimized kernel generation cost is due two
primary causes: the exceedingly large kernel optimization
space and the bloated tensor compilation process.
Fig. 4 illustrates a common tensor compiler pipeline. For

a tensor compiler, the tensor computation is defined in a do-
main specific language. Its potential kernel implementations,
which composes a kernel optimization space, are defined
by primitives and the according configurations. A primitive
is a kind of code transformation for the tensor IR e.g., loop
unroll. A candidate from the kernel space can be described
by a sequence of primitives and their configurations. The
compiling process can then follow these primitives to con-
duct IR transformations to generate kernel. After that, the
target language compiler e.g., LLVM can be called to compile
the kernel into executables for the target devices.

As the combination blowup of loop arrangement, the ker-
nel optimization space is huge. Our analysis shows the size
of a naive space for a MatMul (384×768×768) in WebGPU
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Figure 5: Overview of nn-JIT.web.

is around 42M. Smart searching algorithms and hardware
performance models are normally employed to only select
promising candidates to conduct actual compilation and eval-
uation on the target device. Even so, thousands of candidates
are generally needed to be evaluated before finding an opti-
mized kernel implementation. The compiling cost for each
candidate is around seconds to minutes depending on the
kernel quality. The total optimized kernel generation cost
will be hours.

Therefore, to reduce the optimized kernel generation cost
for JIT, we need to reduce the compiling cost for each can-
didate, and reduce the number of candidates in the space.
To achieve this, we propose nn-JIT.web. In the following
sections, we will introduce the design principles and key
techniques of nn-JIT.web.

3 NN-JIT.WEB OVERVIEW
Fig. 5 is the overview of nn-JIT.web. It consists of four mod-
ules: the tensor JIT compiler for online kernel generation; the
inference engine for executing inference tasks in the browser;
the micro benchmark suite for offline exploration of the con-
sistent primitive settings; and the kernel database for storing
customized kernels tailored to known devices; The whole
kernel generation and inference process facilitated by nn-
JIT.web operates on both cloud and clients, as follows.

During the initialization phase, the browser on the client
downloads the web page, the inference engine, the model and
the initial kernels. The model encloses the weights and the
optimized model graph (e.g., operator fused) ready to deploy.
The inference engine parses the model graph, registers the
kernel for each operator to execute, as well as manages the
memory usage. The initial kernels are determined by the
server, using the client device indicator, e.g., device name
and ids. If the hardware on client have been explored, the
optimal kernels would be used from the kernel database on
server. Otherwise, the pre-defined and uncustomized ones
are used meanwhile the JIT phase would be triggered.

During the JIT phase, the tensor JIT compiler on the server
composes the lite kernel optimization space for each operator
type. The compiler then subsequently generates the kernel
for each candidate within the space. Between the server and
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Figure 6: Our unified Tensor+Web compiling compared
to conventional separated Tensor and Web compiling.

the client, a kernel queue is established. Once a kernel is
generated on server, it is pushed to the client via the queue.
On client, the inference is executed repeatedly. Between ev-
ery inference, the inference engine retrieves one kernel from
the queue and measures its latency. Based on the measure-
ment, the newly retrieved kernel might be re-registered if it
is significantly faster than the current registered one, ensur-
ing that the more efficient kernel is utilized in subsequent
inferences. After testing all the kernels in the queue, the
best kernel along with the measurement results are reported
to the server. The server would update the kernel database
according to the reports.
In accordance with our design, the tensor JIT compiler of

nn-JIT.web is lightweight and can be run either on the cloud
or directly on clients. In our current implementation, we
deploy it on the cloud, as this enables kernel reuse. Optimal
kernels discovered by one device can be seamlessly shared
with other devices possessing the same hardware through the
cloud, thereby facilitating the concept of crowdsourcing. Fur-
thermore, compared to cloud inference, which necessitates
uploading raw user input data, only performance profiles are
sent to the server. This approach aligns with common Web
practices to enhance user experience and protect privacy.
The online kernel generation combined with JIT-styled

inference ensures optimal performance on Web. To facilitate
this, we propose two key techniques that significantly reduce
the kernel generation cost, e.g., from hours tomilliseconds for
a single kernel. In the following sections, we will introduce
these techniques in detail.

4 STREAMLINE COMPILATION PIPELINE
THROUGH TENSOR-WEB CO-DESIGN

Each candidate in the kernel optimization space needs to
be compiled and evaluated on the client device. Current
compiling takesminutes to complete. Even the space only has
dozens of candidates, the total compiling will take hours, not
possible to support the online optimized kernel generation.
To reduce the cost, this section introduces the possibilities
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of removing target-related compiling (Sec. 4.1), mapping
directly from tensor-level IR to Wasm IR (Sec. 4.2), and only
keep necessary optimization passes on Wasm IR (Sec. 4.3).
Sec. 4.4 will briefly discuss compiling pipeline for WebGPU.

4.1 Unify Tensor-Web Compiling
Costly target-related compiling. As shown in Fig. 6, the
conventional compiling process of tensor compilers consists
of twomain separated steps: the tensor-level compilation and
the followed target-related compilation (e.g., Wasm). Gener-
ally, they are designed separately by different communities,
each with their own specific purpose.

Tensor compilation transforms the tensor-level IR by the
primitives and configurations of a picked candidate from the
kernel optimization space, to generate a mapping of tensor
computation to a loop arrangement. This process is inde-
pendent of the target execution environment. Target-related
compilation, on the other hand, aims to generate the efficient
executables on the target environment from any high-level
programs. Therefore, after tensor-level compiling generates
the loop, a separate target-related compiling library such as
LLVM is normally invoked to generate the executables. As
these target-related compiling libraries target to compile any
general-purpose programs, there are many compiling passes,
taking long time to complete.
Specifically, for Wasm as shown in Fig. 1, the target exe-

cution environment is the Wasm virtual machine running
within the browser. The target-related compiling library is
LLVM or Emscripten to compile tensor-level loop to Wasm
bytecode. TheWasm-related compiling by LLVM/Emscripten
also contributes the majority of total tensor compilation cost.
Feasibility of eliminating target-related compiling.

We therefore explore the possibility to eliminate this target-
related compiling, by identifying two opportunities.

Firstly, we could remove ineffective optimizations. From the
target perspective,Wasm is designedwith a simple expression-
based instruction set and a stack-based execution model [17],
for the purpose of easy decoding, running efficiency, and se-
curity. Consequently, many sophisticate compiling optimiza-
tions would be not effective or necessary, thus not needed,
such as the ones for register allocation, instruction reorder-
ing, and memory disambiguation.

Secondly, we could remove duplicated optimizations. From
the tensor perspective, the kernel optimization space which
includes numerous possible kernel implementations, also
encompasses many of the target-related compiling optimiza-
tions. For example, the unrolled loop generated by LLVM
optimization pass is very likely also included in the kernel
optimization space, which will be evaluated as well. The
separated tensor and Wasm compiling cannot avoid the re-
dundancy. In addition, the tensor computation defined by

@main = primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
preflattened_buffer_map = {A_1: A_3: Buffer(A_2, float32, [64, 64], []),

B_1: B_3: Buffer(B_2, float32, [64, 64], []),
C_1: C_3: Buffer(C_2, float32, [64, 64], [])} {

......
for (m.outer: int32, 0, 16) {
for (n.outer: int32, 0, 16) {
......
for (k.outer: int32, 0, 2) {
for (k.inner: int32, 0, 32) {
......
C.local_1[0] = (C.local_1[0]

+ (broadcast(A[cse_var_3], 4)*B[ramp(cse_var_2, 1, 4)]))
......

(func $main (param $0 i32) (param $1 i32) (param $2 i32)
......
(loop $label$1
(loop $label$2
......
(loop $label$3
(loop $label$4

......
(local.set $24
......
(f32x4.mul
(local.tee $38
(v128.load32_splat offset=12288)(local.get $0)

)
(local.get $36)
)
......

(a) Tensor IR

(b) WASM IR

Figure 7: Lower tensor IR to Wasm IR for MatMul.

the tensor domain specific languages does not need the com-
plex compiling optimizations for general-purpose programs,
such as the dead code elimination. Thus, it could be further
streamlined.
Unified Tensor-Web compiling. The analysis above

prompts us to redesign the tensor compiling pipeline, which
unifies the tensor and Wasm compiling as shown in Fig. 6.
It removes the separated target compiling invocation, and
compiles tensor IR directly to the target executables e.g.,
Wasm bytecode. As a premise, Wasm is designed to be the
compiling target of any high-level languages, including C
and C++. It can also be the target of tensor-level IR.
The optimization passes of different level IR’s are co-

designed, retaining only the necessary and non-repetitive
ones. Through analyzing the generated code performance,
we find almost all the optimization passes in LLVM can be
covered in kernel optimization space. Only the ones closely
related to Wasm instruction definition will be additionally
needed to apply on the Wasm IR as the figure shows. These
passes are very light weighted, taking about 100ms to com-
plete, tens or even hundreds of times less than calling LLVM.

4.2 Lower Tensor to Wasm
The primary challenge in directly converting tensor IR to
Wasm IR involves determining how to effectively map the
statement-based high-level tensor IR to the expression- and
stack-based low-levelWasm IR.Wasm has only been lowered
from LLVM IR before, which is also a lower level IR, facili-
tating the transformation. For example, LLVM has already
lowered the high-level for statement.
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Algorithm 1: Lower Tensor IR to Wasm IR for loop
input :ForNode of Tensor IR 𝑓 𝑜𝑟𝑁𝑜𝑑𝑒
output :LoopExpression of Wasm IR 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟

1 ⊲ for(loopVar=begin;loopVar<end;loopVar+=stride) body;
2 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 ← createWasmVar();
3 𝑖𝑛𝑖𝑡𝐿𝑜𝑜𝑝𝑉𝑎𝑟𝐸𝑥𝑝𝑟 ← makeLocalSet(𝑙𝑜𝑜𝑝𝑉𝑎𝑟 , 𝑓 𝑜𝑟𝑁𝑜𝑑𝑒 .begin);
4 𝑙𝑡𝐸𝑥𝑝𝑟 ← makeBinary(Op::Lt, 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 , 𝑓 𝑜𝑟𝑁𝑜𝑑𝑒 .end);
5 𝑏𝑟𝐼 𝑓 𝐸𝑥𝑝𝑟 ← makeBreak(𝑙𝑜𝑜𝑝𝑉𝑎𝑟 .label, 𝑙𝑡𝐸𝑥𝑝𝑟 );
6 𝑎𝑑𝑑𝐿𝑜𝑜𝑝𝑉𝑎𝑟𝐸𝑥𝑝𝑟 ← makeBinary(Op::Add, 𝑙𝑜𝑜𝑝𝑉𝑎𝑟 , 𝑓 𝑜𝑟𝑁𝑜𝑑𝑒 .stride);
7 𝑏𝑜𝑑𝑦𝐸𝑥𝑝𝑟 ← VisitStmt(𝑓 𝑜𝑟𝑁𝑜𝑑𝑒 .body);
8 𝑖𝑛𝑛𝑒𝑟𝐸𝑥𝑝𝑟 ← makeBlock(𝑏𝑜𝑑𝑦𝐸𝑥𝑝𝑟 ,𝐴𝑑𝑑𝐿𝑜𝑜𝑝𝑉𝑎𝑟𝐸𝑥𝑝𝑟 , 𝑏𝑟𝐼 𝑓 𝐸𝑥𝑝𝑟 );
9 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 ← makeLoop(𝑙𝑜𝑜𝑝𝑉𝑎𝑟 .label, 𝑖𝑛𝑛𝑒𝑟𝐸𝑥𝑝𝑟 );

10 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 ← makeBlock(𝑖𝑛𝑖𝑡𝐿𝑜𝑜𝑝𝑉𝑎𝑟𝐸𝑥𝑝𝑟 , 𝑙𝑜𝑜𝑝𝐸𝑥𝑝𝑟 );

Fig. 7 uses a code snippet to illustrate the differences be-
tween the two IRs by using the MatMul implementation as
an example. The tensor IR is represented as a sequence of
statements, such as the for loop statement. Wasm, on the
other hand, is composed of a sequence of expressions (en-
closed by the parenthesis in the figure). Each expression is
evaluated to produce a value. Wasm is implemented as a
stack-based machine, in which instructions manipulate an
implicit operand stack, popping argument values and push-
ing result values. This design is to fit the sandboxed and
resource-limited environment of browsers.

Map for statement to an expression block. Tomap the
tensor IR to Wasm, we traverse the tensor IR AST (abstract
Syntax Tree) to transform the sequence of statements to se-
quence of expressions. The difficulty lies in handling the for
statement. Since Wasm does not utilize statements, we con-
struct a nested sequence of expressions as a block enclosed
by the Wasm loop&end instructions for this statement.

As we show in Algorithm 1, the sub-expressions, e.g., loop
variable calculation, are created while traversing the for
node of the tensor IRAST (line 2-7). Then the expressionswill
be nested together as the execution order of the stack (line 8-
10). During execution, the br_ifwill pop the condition result
from the stack, and decide whether to branch to the loop label
(line 5). The loop instruction introduces an implicit label,
which serves as the target of the branch instruction. During
the actual stack execution, the loop instruction pushes a new
entry onto the control stack, and record the stack height. If
the branch is taken, the stack pops up to the block’s height
before and proceed to the end of the block.

4.3 Compiling Optimizations for Wasm IR
As stated above, our compiling pipeline applies the optimiza-
tion passes related to Wasm instruction definition to the
Wasm IR. Only three passes are needed, as shown in Fig. 8: 1)
offset load/store, 2) load/store to variable, and 3) combined
instruction. Each pass is explained in detail below.

(1) Offset load/store pass is to eliminate constant address
calculation for load/store instructions. Wasm code execu-
tion accesses a linear memory in the Wasm virtual machine.

broadcast(placeholder[cse_var_8], 4)

(f32x4.splat
(f32.load
(i32.add
(local.get $16)
(i32.shl
(local.get $43)
(i32.const 2)))))

(f32x4.splat
(f32.load offset=768
(local.get $16)))

(v128.load32_splat offset=768
(local.get $16))

(local.tee $10
(v128.load32_splat offset=768
(local.get $16)))

(a) Tensor IR (Load a f32 from 

placeholder[cse_var_8] and 

broadcast it to f32x4)

(b)

(c)

(d)

(e)

Lower

Optimize

Optimize

Optimize

Figure 8: Wasm IR transformation by applying each
of compiling passes: (a) tensor IR for a broadcast load
statement; (b)lowered Wasm IR; (c) Wasm IR after off-
set load/store pass; (d)Wasm IR after combined instruc-
tion pass; (e) Wasm IR after load/store to variable pass.

Wasm provides the offset augmented load/store instruction
to avoid the address calculation. This pass is to utilize this
offset. By applying it as shown in Fig. 8 (b, c), five additional
instructions can be eliminated for each load/store. This opti-
mization can speed up generated kernels by 2.7×.

(2) Combined instruction pass is to eliminate separated in-
structions if possible. It is to apply the combined instruction,
i.e., v128.load_splat, provided byWasm. This load_splat
combines load and splat instructions into one that loads a
single lane and duplicate it to all lanes of the vector.
(3) Load/store to variable pass is to eliminate repeated

stack popping and pushing. Wasm local.tee instruction
duplicates the top of the stack to a variable for later use. The
variable also resides in the linear memory. This pass applies
this instruction to replace repeated load/store of the same
memory address, to avoid the repeated stack pushing and
popping. This can reduce kernel latency by ∼7%.
Just applying these light-weight optimization passes, the

Wasm byte codes generated by nn-JIT.web has no noticeable
performance or byte code difference. The compiling latency
can be accelerated by up to 125× compared to SOTA practice.

4.4 Compiling for WebGPU
For WebGPU, the target compilation platform is the hard-
ware GPU. In contrast to Wasm byte code, which is executed
in the browser’s virtual machine, WebGPU implementation
in browser essentially only translates WebGPU APIs into na-
tive GPU APIs (with limited optimization passes), while the
target-specific compilation is handled by the GPU driver. As
illustrated in Fig. 6, it is not possible to eliminate the separate
invocation of target-specific compilation; instead, we can
only lower tensor IR to SPIR-V[19], a portable IR supported
by both native GPU APIs and WebGPU. The reduction in
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compilation time forWebGPU is achieved through the tensor
optimization space design, which will be discussed in Sec. 5.

5 ACCELERATE KERNEL TUNINGWITH
WEB-SPECIFIC LITE SPACE

To reduce the vast kernel optimization space, we propose
the web-specific lite kernel space design based on two guide-
lines: the web specific requirements (Sec. 5.1), and the effi-
cient utilization of hardware resources (Sec. 5.2). Existing
works [21, 36] also aim to shrink kernel optimization space
for inference on native hardware. However, these spaces
are either still too large to be evaluated online or require
pre-defined hardware performance models. We will show
that for in-browser inference, considering the two guidelines
leads to a lite space size of just a few dozens, which can be
evaluated online. Moreover, the numerous web application
clients offer the unique opportunity for crowdsourcing the
global optimal kernel (Sec. 5.3).

5.1 Web-guided Offline Space Reduction
Web programming is aimed at achieving portability and se-
curity. For instance, both Wasm and WebGPU implement
rigorous validation processes to prevent malicious or erro-
neous code, such as type errors, memory overflow, out-of-
bounds access, and invalid jumps. These specialties convey
consistent kernel performance patterns across devices. The
related kernel implementations do not need to be evaluated
on every device, which can significantly reduce the number
of candidates within the kernel optimization space.
Performance pattern of Web programming. To illus-

trate the performance impact, Fig. 9 compares a MatMul
latency with different primitive settings, i.e., cache_read on
and off for Wasm, and the unroll on and off for WebGPU as
examples. The performance shows the same pattern across
devices. Disabled cache_read and enabled unroll always
achieve better performance. What is more, they are also
against the common setting for native kernels. The reasons
are explained as follows.

The cache_read primitive creates a small buffer that can
reside in different memory levels. As a nested loop in a ker-
nel is mapped to various levels of tiling on the hardware.
The small buffer can load a tile to improve data locality. For
native kernel execution, the cache_read does improve per-
formance onmany devices. However, when it comes toWasm
kernels, the performance is reduced on all tested devices as
shown in Fig. 9. This decrease in performance is attributed to
the costly Wasm validation process for memory allocation.

The unroll primitive explicitly unrolls the loop to reduce
the loop related overheads. In native inference, the unroll
primitive does not impact kernel performance on many de-
vices, as the native GPU compiler can conduct loop unrolling
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Figure 9: The MatMul kernel ([M,K,N]=[640,768,2304])
latency comparison of different primitive setting. The
advanced setting is consistent across devices.

optimization as needed. However, WebGPU only triggers
a weak level of compiling optimization in native GPU to
facilitate the quick response of web applications. As a result,
the unroll primitive needs to be specifically set for tensor
compiling to achieve better performance.
Discovery of Web-consistent primitive settings. Al-

though we have demonstrated two typical examples of prim-
itive settings, it remains challenging to discover all such
primitives with cross-device consistent settings. To minimize
human efforts, we propose developing a microbenchmark to
automatically detect these primitives. The benchmarking is
a one-time effort, as it is only related to the Web techniques
used for backends, such as Wasm and WebGPU.

The microbenchmark suite automatically traverses all the
primitives for a common-sized MatMul kernel (specifically
with a shape of 4K×4K×4K in practice). The one variable
at a time method is used to change the setting of only one
primitive at a time, such as cache_read on/off. The suite is
evaluated offline on multiple testing client devices. We then
compare the measurements across these testing devices. If
the results are consistent, we set the primitives accordingly,
e.g., cache_read off and unroll on. Consequently, we can
fix these settings when constructing the kernel search space,
hence reducing the space. If the results are inconsistent, we
consider them as device-dependent primitives. These would
be processed in the device-guided online space construction
module, allowing for adjustments based on specific device
characteristics to optimize performance.

5.2 Device-guided Lite Space Building
Microbenchmark results remove the device-consistent set-
tings from the kernel optimization space. The left ones are
inconsistent across devices. This space is still large in the size
of tens of thousands. This section will use formulated kernel
hardware usage and heuristics to build the lite space with
promising candidates for JIT evaluation on target devices.
Rational for heuristics and formulation. A tensor

computation is mapped to a kind of loop arrangement in
a kernel implementation, and further mapped to tiles in
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Figure 10: Tiles on thememory hierarchy for aMatMul.

the hardware during execution. As shown in Fig. 10, the
innermost loop tile is mapped to the registers, and the second
level loop tile is mapped to the L1 cache/shared memory.
Therefore, the tile size prominently decides the hardware
usage of the kernel implementation, and thus the kernel
performance.
Fundamentally, a tile size with efficient hardware usage

is to balance 1) the use of parallel computation units for
fast computation and 2) the advanced memory storage e.g.,
shared memory for fast data accesses. However, the two
are normally conflicted with each other. More threads can
better saturate the parallel computing units and hidememory
access stalls. However, more threads can overuse the registers
and shared memory. On the other hand, threads that satisfy
the registers can under use the parallel units. The sweet
spot to balance the two depends on the target hardware and
running environment, such as the size of advancedmemories,
the computation and memory bandwidth, and the quality of
compiling, which have to be tuned to find on the device.

Heuristics for efficient hardware usage. We therefore
formulate the hardware usage based on the tile sizes, and set
heuristics to pick the ones with potential efficient hardware
usage and good performance, as shown in Table 1. These
will be the kernel optimization space for our JIT compila-
tion, and evaluated interleaved with the DNN inferences on
client devices. These formulas only need to get the client
device type to know the hardware limitations of memory
size, register size, and number of cores. This device type is
supported to read by Web programming interface. No other
prior knowledge of the devices are needed.
From the calculation, the ones priorities the higher-level

storage (i.e., registers) usage (Web GPU heuristics 4) within
the storage size (Heuristics for Wasm 2 and Heuristics for
WebGPU 2) will be in the space. They will be evaluated in the
order from the ones with max activated blocks to the ones
with min activated blocks (Web GPU heuristics 4). Other
heuristics are based on the Wasm andWebGPU specification.
Note in the actual calculation, there will be a relaxation

Table 1: Heuristics of web-specific lite space.

Params.
(Symbols follow Fig. 10)

𝐷𝑎𝑡𝑎𝐵𝑖𝑡𝑠 : bits of data,
𝑥0, 𝑟0, 𝑦0: the inner-most tile size,
𝑥1, 𝑟1, 𝑦1: the second tile size,
𝑊𝑎𝑟𝑝𝑆𝑖𝑧𝑒 : the warp size,
𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑐𝑜𝑟𝑒 : the register number per core
𝐿1𝐶𝑎𝑐ℎ𝑒𝑐𝑜𝑟𝑒 : the L1 cache size per core,
𝑊𝑎𝑟𝑝𝑐𝑜𝑟𝑒 : the warp number per core.

𝑆𝐼𝑀𝐷𝐿𝑒𝑛𝑔𝑡ℎ 𝑥0 · 𝐷𝑎𝑡𝑎𝐵𝑖𝑡𝑠
𝑇ℎ𝑟𝑒𝑎𝑑𝑐𝑜𝑟𝑒 (𝑥1/𝑥0) · (𝑦1/𝑦0)
𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑡ℎ𝑟𝑒𝑎𝑑 ( (𝑥0 · 𝑟0) + (𝑟0 · 𝑦0) + (𝑥0 · 𝑦0) )

L1Cache/shared mem. (𝑥1 · 𝑟1) + (𝑟1 · 𝑦1) + (𝑥1 · 𝑦1)
𝑊𝑎𝑟𝑝 𝑇ℎ𝑟𝑒𝑎𝑑𝑐𝑜𝑟𝑒/𝑊𝑎𝑟𝑝𝑆𝑖𝑧𝑒

𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑙𝑜𝑐𝑘

𝑚𝑖𝑛 (RegLimitedBlock, L1CacheLimitedBlock, warpLimitedBlock) ,
𝑅𝑒𝑔𝐿𝑖𝑚𝑖𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘 =

𝑅𝑒𝑔𝑐𝑜𝑟𝑒

𝑅𝑒𝑔𝑡ℎ𝑟𝑒𝑎𝑑 · 𝑇ℎ𝑟𝑒𝑎𝑑𝑐𝑜𝑟𝑒
,

𝐿1𝐶𝑎𝑐ℎ𝑒𝐿𝑖𝑚𝑖𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘 =
𝐿1𝐶𝑎𝑐ℎ𝑒𝑐𝑜𝑟𝑒
𝐿1𝐶𝑎𝑐ℎ𝑒

,

𝑤𝑎𝑟𝑝𝐿𝑖𝑚𝑖𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘 =
𝑊𝑎𝑟𝑝𝑐𝑜𝑟𝑒

𝑊𝑎𝑟𝑝

Heuristics
for all

1. 𝑆𝐼𝑀𝐷𝑙𝑒𝑛𝑔𝑡ℎ ≤ 128𝑏𝑖𝑡𝑠
2. 𝑥0, 𝑟0, 𝑦0, 𝑥1, 𝑟1, 𝑦1: power of 2

Heuristics
for WASM

1. 𝐿1𝐶𝑎𝑐ℎ𝑒 ≤ 𝐿1𝐶𝑎𝑐ℎ𝑒𝑐𝑜𝑟𝑒
2. 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑡ℎ𝑟𝑒𝑎𝑑 · 𝑇ℎ𝑟𝑒𝑎𝑑𝑐𝑜𝑟𝑒 = 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑐𝑜𝑟𝑒

Heuristics
for WebGPU

1.𝑇ℎ𝑟𝑒𝑎𝑑𝑐𝑜𝑟𝑒 ≤ 256
2. 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑡ℎ𝑟𝑒𝑎𝑑 · 𝑇ℎ𝑟𝑒𝑎𝑑𝑐𝑜𝑟𝑒 ≤ 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑐𝑜𝑟𝑒
3. 𝐿1𝐶𝑎𝑐ℎ𝑒 ≤ 16𝐾𝑖𝐵
4.𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑙𝑜𝑐𝑘 = 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐿𝑖𝑚𝑖𝑡𝑒𝑑𝐵𝑙𝑜𝑐𝑘

5.𝐴𝑐𝑡𝑖𝑣𝑒𝐵𝑙𝑜𝑐𝑘 : from max to min

ratio for the hardware resources, since other variables in the
kernel will also use registers.

Finally, by applying both the Web-guided space reduction
and the device-guided space building, our web-specific lite
kernel optimization space only includes a few dozens of
candidates, six orders of magnitude smaller than the naive
search space, which is able to be evaluated online.

5.3 Crowdsourcing and Kernel Zoo
We have constructed a lite kernel optimization space. Dur-
ing deployment, we recognize a potential issue arising from
the diverse nature of deployment environments, including
various background workloads and hardware utilization lev-
els. This may cause variance in assessed latency, potentially
affecting our choice of the optimal kernel. To mitigate these
concerns, we propose an extended kernel space.

Extended kernel space. For each device, we enhance the
lightweight kernel space using an exploration-and-exploitation
approach. The extended kernel space typically comprises two
sets of candidates: 1) the exploration set, which includes the
original lightweight kernel set and may be empty if optimal
candidates for the device have already been discovered; 2)
the exploitation set, obtained from the crowdsourcing mod-
ule, which gathers and sends optimal kernel candidates to
new devices with similar hardware specifications for further
validation. Overall, the number of extended candidates is
approximately one-tenth of the lite kernel space.
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Table 2: Theweb-specific lite space for aMatMul kernel
(M=K=N=4096) on WebGPU.

Major Primitives Configures (symbols follow Table 1)
Cache Read
Cache Write
Reorder

Bind

Unroll
Vectorize
Tile Size

[Yes,No]
Yes
𝑟2, 𝑦2, 𝑥2, 𝑟1, 𝑦1, 𝑥1,
𝑟0, 𝑦0, 𝑥0
𝑦2→ block.y, 𝑥2→ block.x
𝑦1→ thread.y, 𝑥1→ thread.x
𝑦0
𝑥0
(𝑟0, 𝑦0, 𝑥0) ∈ [4, ..., 32]
(𝑟1, 𝑦1, 𝑥1) ∈ [32, ..., 256]

Crowdsourcing and the kernel dataset. The diverse
nature of web clients provides us with the opportunity to
engage in crowdsourcing. The fundamental concept is that
the searched optimal kernel implementations can be shared
among devices with identical hardware. To facilitate this, we
employ two designs: 1) we leverage the hardware ids as well
as profiled hardware primitives as a criterion to ascertain
whether devices can share the same generated optimal kernel.
In particular, we form the primitive vector as ®𝜌 = ⟨𝜌𝑖⟩, 𝜌𝑖 ∈
{0, 1}, where 𝜌𝑖 denotes the 𝑖 th primitive obtained from the
micro benchmark. 2) In order to identify the best generated
kernel, we adopt a majority voting strategy. Clients submit
top-N (5 in our implementation) fastest implementations for
a given kernel with the rankedweights.We also introduce the
kernel dataset. We take as the primary index key (𝑡, 𝑠, ®𝜌, 𝑖𝑑),
where 𝑡 is the kernel type, 𝑠 denotes the kernel shape, ®𝜌 is
the primitive vector and 𝑖𝑑 is the device id.

6 IMPLEMENTATION
The implementation of nn-JIT.web is based on TVM [10]
and Binaryen [9]. We use the native GPU driver to com-
pile WebGPU. To implement the Tensor-Web co-designed
compilation pipeline in nn-JIT.web, we introduce a new com-
pilation target for Wasm in TVM. Specifically, we develop
the WasmModuleNode to enable lowering tensor intermedi-
ate representation (IR) to Wasm IR. We implement two cru-
cial functions, wasm::Builder and wasm::ModuleWriter,
to construct Wasm IR and compile Wasm binary.
To create the lite kernel space for nn-JIT.web, we extend

TVM by incorporating web-specific scheduling templates. In
these templates, we set the configurations for web-consistent
primitives and define the search space for device-dependent
primitive configurations selected by heuristics. Table 2 shows
an example lite kernel optimization space we build for a
MatMul. To implement the microbenchmark suite, we use
a 4 k×4 k×4 k MatMul with different primitive settings to
develop the evaluated kernels and compile them using the
compilation tool chain of nn-JIT.web. We also adapt the in-
browser inference runtime based on TVM, which enables
importing graph definitions and weights from both TF.js and

Table 3: Evaluated kernels type and shape.

ID Kernel Type Kernel Size Model
K0 MatMul M=384,K=768,N=768 RoBERT
K1 MatMul M=640,K=768,N=3072 GPT-2
K2 BatchMatMul B=12,M=384,K=384,N=64 BART
K3 BatchMatMul B=120,M=64,K=64,N=64 GPT-2

Ort-Web. Overall, nn-JIT.web comprises 2085 new lines of
Python code, 1671 new lines of C++ code, and 564 new lines
of JavaScript code.

7 EVALUATION
7.1 Experiment Setup
Hardware.We conduct experiments on 8 desktop and mo-
bile devices, including AMD Ryzen 5800H CPU, Intel I9-
12900 CPU, ARM Cortex-A78/A76 CPU and NVIDIA RTX
3000/3070 Ti GPU, AMD Radeon GPU, Intel HD 630 GPU.
We fix the maximum frequency on the selected devices to
ensure consistent performance measurements.

Kernels andmodels.We evaluate nn-JIT.web on modern
transformer models, including RoBERTa [22], BART [20],
GPT-2 [26], and T5 [27]. The kernel evaluation results show
the typical sized kernels from these models, as listed in Table
3 including MatMul and BatchMatMul with different shapes.
For the sequence-to-sequence models, such as GPT-2 and
T5, we fix the input length at 384 to obtain the comparable
results across devices and models.

Baselines. We compare nn-JIT.web with three in-browser
DL inference frameworks as baselines, including TF.js, ORT-
web and pre-tuned AutoTVM [10]. For TF.js, we use 3.21.0
version. For ORT-web, we use 1.14.0 version. For AutoTVM,
we use the default kernel space, search algorithm i.e., XG-
Boost and tuning trails i.e., 1000 to generate and tune the
kernels. The turning targets are Intel I7-10700 CPU and We-
bGPU kernels on NVIDIA 3050 GPU, which are not included
in our test devices. The evaluation is conducted in a Chrome
browser with the version of 111.0.5555.
Metrics. We use performance.now() function, a Jave-

Script API function to measure the latency of kernels and
models running with Wasm, and writeTimestamp function
of WebGPU API To measure the latency on WebGPU. Each
kernel and model are evaluated with one warmup and 50
executions, the averaged latency is reported.

7.2 Overall Performance
Kernel Performance. Fig. 11 demostrates the latency of
tested kernels on selected CPUs and GPUs, comparing base-
lines with nn-JIT.web. We observe a significant speedup. On
CPUs with Wasm, nn-JIT.web achieves an average speedup
of 42.57×, and on GPUs with WebGPU, it accelerates kernel
executions by an average of 2.77×. Specifically, nn-JIT.web
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Figure 11: Kernel latency executed with TF.js, ORT-web, pre-tuned AutoTVM as well as nn-JIT.web.
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Figure 12: Kernel performance improvements with the
JIT kernel optimization rounds on different devices.
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Figure 13: Kernel performance improvements along
with the JIT tuning rounds with nn-JIT.web and Au-
toTVM.

outperforms TF.js by 6.26× on Wasm and 1.68× on WebGPU.
When compared to pre-tuned AutoTVM, the speedup is
119.92× on CPUs and 3.86× on GPUs. The inference speedup
of nn-JIT.web is mainly due to efficient kernel tuning for
specific hardware, whereas one-for-all kernel approaches in-
cluding TF.js, ORT-Web as well as pre-tuned AutoTVM, fall
short in this regard.
Figure12 showcases the kernel performance in GFLOPs

and the JIT tuning rounds on selected CPUs and GPUs. We
use the K2 kernel configuration, as detailed in Table3. As

shown, nn-JIT.web attains optimal performance on CPUs
with Wasm after 10∼32 tuning rounds, while 25∼40 rounds
are needed to achieve peak performance on GPUs. This can
be attributed to the web-specific lite space. Moreover, our
compilation pipeline optimization ensures that each tuning
round takes only about 500ms for Wasm and 100ms for We-
bGPU, based on our evaluation.

We also compare nn-JIT.web with the SOTA one-for-each
kernel approach. We use AutoTVM to generate kernel can-
didates and perform JIT inference as JIT TVM. The ker-
nel configuration employed is K0, as described in Table3.
The comparison is illustrated in Figure13. As shown, on
the Nvidia 3050, nn-JIT.web reaches near-peak performance
(1159 GFLOPs) within 25 rounds, while AutoTVM lags be-
hind at 350 GFLOPs. On the Intel I7, nn-JIT.web finds the best
kernel implementation at the 8th round, demonstrating a sig-
nificant performance improvement of approximately 2.80×
compared to AutoTVM. Our evaluation suggests that Au-
toTVM would need 1106 additional tuning rounds to achieve
its optimal performance.
Model performance.We continue to evaluate the end-

to-end model performance achieved by nn-JIT.web and other
baselines. In Figure 14, we denote RoBERTa as M0, BART as
M1, GPT-2 as M2, and T5 as M3. As illustrated, nn-JIT.web
attains more than 3.13× and 1.36× speedup on average across
the tested models compared to TF.js and ORT-Web on CPU
with Wasm, respectively. Notably, on the AMD 5800H CPU,
nn-JIT.web improves by up to 8.27× on M3 compared to
TF.js, while up to 5.64× on Intel I9. Compared to pre-tuned
AutoTVM, the achieved speedup is approximately 1.93×with
Wasm and 1.51× with WebGPU. As TF.js and ORT-Web can-
not support all kernels in the tested models with WebGPU,
we do not report their model latency.

The JIT kernel optimization on models may take longer
than on individual kernels, but it remains efficient. As shown
in Figure 15, for BART, nn-JIT.web takes approximately 5.5
seconds to discover the optimal kernel implementations for
the Nvidia 3000 GPU. For CPUs, peak performance is just
achieved after around 17.8s and 22.1s for the Intel i9 and
ARM A76, respectively.
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Figure 14: Model latency executed with TF.js, ORT-web, pre-tuned AutoTVM as well as nn-JIT.web.
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Figure 15: Model performance improvements with the
JIT kernel optimization time on different devices.

7.3 Evaluation of Tensor-Web Co-Designed
Compilation Pipeline

Next, we analyze nn-JIT.web and evaluate each design com-
ponent, beginning with the optimized compilation pipeline.
Table 4 presents the compiling latency and achieved kernel
latency for both the baseline and nn-JIT.web on AMD 5800H
CPU. We use AutoTVM’s conventional compilation pipeline
as the baseline. For our optimized pipeline, we examine three
optimization passes, namely offset load/store pass, combined
instruction pass, and load/store to variable, to assess their
individual contributions to the optimized pipeline. The same
kernel implementation is used for all cases.
As demonstrated, our compilation pipeline with all opti-

mizations is over up to 125.8× faster than the baseline, while
maintaining a similar kernel inference latency (76ms and
74ms). Furthermore, our pipeline with three optimization
passes results in a significant performance improvement
of 166%, 185%, and 216%, respectively, with the compiling
overhead increasing by 25%.

Table 4: The compiling latency and achieved kernel la-
tency of nn-JIT.web with different optimization passes.

Compilation Latency (sec) Inference Latency (ms)
Conventional Compilation 5.8∼62.9 76

Ours w/o opt. passes 0.4∼0.5 234
Ours w/ offset load/store 0.5∼0.6 88
Ours w/ offset load/store
& combined instruction 0.5∼0.6 82

Ours w/ offset load/store
& combined instruction
& load/store to variable

0.5∼0.6 74

7.4 Evaluation of Web-Specific Lite Space
Next, we assess the design of the web-specific lite kernel
space, which significantly reduces the kernel optimization
space. We examine two typical kernels, MatMul and Batch-
MatMul, and compare their kernel optimization spaces in Au-
toTVM and nn-JIT.web. The results are presented in Table 5.
Notably, the web-specific lite kernel space size is, on average,
around 0.0013% and 0.000068% of the AutoTVM space on
Wasm and WebGPU, respectively, decreasing search candi-
dates from millions to dozens. In combination with our opti-
mized compilation pipeline, nn-JIT.web reduces the overall
kernel generation cost from hours to milliseconds, enabling
JIT-powered inference in web browsers.

Table 5: Kernel space of AutoTVM and nn-JIT.web.

Kernel Type (Size) AutoTVM nn-JIT.web
WASM WebGPU WASM WebGPU

MatMul
(M=384,K=768,N=768) 2,099,520 42,768,000 10∼32 41

BatchMatMul
(B=12,M=384,K=384,N=64) 2,694,384 74,131,200 10∼32 30

7.5 Overhead
nn-JIT.web enables JIT kernel optimization with minimal
overhead. For example, the microbenchmark is a one-time
effort executed in the offline stage, taking less than 1 second
on a AMD Ryzen 5800H CPU according to our measure-
ments. During JIT inference, kernels are sequentially pushed
from the server to clients. The compiled kernel sizes range
between 5∼30KiB, which does not add a significant burden
to the network load. To evaluate the newly arriving kernels,
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the client typically takes around 69∼728ms for most kernels
based on our assessment, which is nearly imperceptible.

8 RELATEDWORKS
DL kernel generation.Many works focus on automatically
searching and generating optimal kernel implementations
from a vast space. TVM [10] generates DL kernels based
on the space of manual schedule templates and a learned
cost model to search for the best kernel implementation. The
subsequent work, Ansor [34], generates higher-performance
DL kernels than TVM without manual schedule templates
and reduces the average search time. Romou [21] supports
new primitives to generate mobile-GPU-friendly DL kernels
and accelerates kernel generation through hardware-aware
search space pruning. Roller [36] generates DL kernels using
an rTile-construction-based approach, significantly reduc-
ing search time. Triton [30] is a DL kernel generator that
extends LLVM-IR and adds an additional tile-level optimiza-
tion pass, achieving high DL kernel performance. TLP [33]
is a DL-based cost model that leverages schedule primitive
features to speed up DL kernel search. However, none of
these works address the online optimal kernel generation
issue for in-browser DL inference. They all fail to provide the
lightweight kernel space and compilation pipeline, which
meet the requirements of JIT inference on the Web.

In-Browser DL inference. The emergence of DL frame-
works, such as TensorFlow.js [29] and ONNX Runtime Web
[32], has significantly contributed to making in-browser DL
inference a reality. TensorFlow.js, proposed by Google, is an
open-source library that enables the deployment of DL mod-
els in browsers or on Node.js. It supports JavaScript, Wasm,
WebGL, and WebGPU. ONNX Runtime Web, another open-
source library proposed by Microsoft, facilitates in-browser
DL inference by processing models in ONNX format. How-
ever, it only supports Wasm and WebGL backends.

9 CONCLUSION
In this paper, we present nn-JIT.web, the first in-browser in-
ference system that enables JIT optimized kernel generation,
supporting Wasm and WebGPU. Our evaluation shows that
nn-JIT.web accelerates inference by an average of 26.65×
compared to TF.js, ORT-Web, and AutoTVM, while maintain-
ing minimal compilation overhead.
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