
AdaInf: Data Drift Adaptive Scheduling for Accurate and
SLO-guaranteed Multiple-Model Inference Serving at Edge

Servers
Sudipta Saha Shubha
University of Virginia

USA

Haiying Shen
University of Virginia

USA

ABSTRACT
Various audio and video applications rely on multiple deep neural
network (DNN) models deployed on edge servers to conduct infer-
ence with ms-level latency service-level-objectives (SLOs). To avoid
accuracy decreases caused by data drift, continual retraining is nec-
essary. However, this poses a challenge for GPU resource allocation
to satisfy the tight SLOs while maintaining high accuracy in this
scenario. There has been no research devoted to tackling this issue.
In this paper, we conducted trace-based experimental analysis in
this particular scenario, which shows that different models have
varying degrees of impact from data drift, incremental retraining
(proposed by us that retrains certain samples before inference) and
early-exit model structures can help increase accuracy, and the
interdependencies among tasks may lead to significant CPU-GPU
memory communications. Leveraging these unique observations,
we propose a data drift Adaptive scheduler for accurate and SLO-
guaranteed Inference serving at edge servers (AdaInf). AdaInf uses
incremental retraining and allocates GPU amount among applica-
tions based on their SLOs. For each application, it splits GPU time
between retraining and inference to satisfy its SLO, and then al-
locates GPU time among retraining tasks based on their impact
degrees. In addition, AdaInf proposes strategies that leverage the
job features in this scenario to reduce the impact of CPU-GPU
memory communications on latency. Our real trace-driven exper-
imental evaluation shows that AdaInf can increase accuracy by
up to 21% and reduce SLO violations by up to 54% compared to
existing methods. Achieving similar accuracy as AdaInf requires
4× more GPU resources on the edge server for the existing method.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Com-
puting methodologies → Machine learning.

KEYWORDS
Edge server, deep learning, data drift, retraining, inference serving

ACM Reference Format:
Sudipta Saha Shubha and Haiying Shen. 2023. AdaInf: Data Drift Adaptive
Scheduling for Accurate and SLO-guaranteed Multiple-Model Inference

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0236-5/23/09.
https://doi.org/10.1145/3603269.3604830

Serving at Edge Servers. In ACM SIGCOMM 2023 Conference (ACM SIG-
COMM ’23), September 10, 2023, New York, NY, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3603269.3604830

1 INTRODUCTION
Deep neural networks (DNNs) have revolutionized various domains
by leveraging powerful GPUs and large datasets. With the availabil-
ity of DNN models, application developers have started building
multi-model applications (e.g., video surveillance, traffic monitor-
ing, real-time analysis of drone footage, and language translation)
that process audio or video streams in real time [1]. A multi-model
application consists of several DNN models organized in a directed
acyclic graph (DAG). For example, as shown in Fig. 1, in a video
surveillance application, the output of an object detection model is
used as the input of a vehicle type recognition model (to recognize
personal car, ambulance, etc.) and a person activity recognition
model (to recognize walking, fighting, etc.).

Figure 1: DAG of the video surveillance application.

To ensure that inference requests meet ms-level latency service-
level-objectives (SLOs) for each application, developers typically
deploy the application’s models on an edge server within a small-
scale data center that serves a specific locality [2]. Unlike distant
cloud servers, edge servers can provide low latency services and
offer privacy protection for user data as regulations such as GDPR
mandate against sending videos or audios outside of a specific lo-
cality [3]. As shown in Fig. 2, an edge server is connected to a
cellular access network on one end and to the cloud through a wide-
area network on the other end [4]. Through the cellular network,
users submit inference requests to the edge server, and the edge
server returns the inference results. Various commercial options
are currently available for public edge servers, such as Amazon
AWS Wavelength and Microsoft Azure Stack Edge.

Figure 2: Edge server deployment in real world.

473

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3603269.3604830
https://doi.org/10.1145/3603269.3604830
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603269.3604830&domain=pdf&date_stamp=2023-09-01


ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Shubha et al.

However, edge servers often have limited resources with low-
capacity or only a few GPUs [5], which is further compounded by
the growing computational demands of DNN applications outpac-
ing the capabilities of GPUs. Model compression techniques are
applied to address this problem, but the accuracy of the compressed
models can significantly drop due to data drift, where live audio
or video data diverges significantly from the training data [3]. For
example, in the video surveillance application, cameras in streets en-
counter varying scenarios over short time intervals, such as sudden
changes in lighting or occlusion conditions [6], and rapid changes
in the distribution of vehicle types or person activities [3]. Because
compressed DNNs have shallower architectures and fewer weights,
they are not generalizable to new data distributions or changed
conditions, which can affect accuracy [7].

To ensure high accuracy for applications with rapidly chang-
ing situations, it is important to perform continual learning or
retraining [3, 8, 9] at short time intervals (e.g., 50s) [3]. In the re-
training, the DNNs are retrained on new samples (i.e., inference
requests) collected during the previous time period. The class labels
of the retraining data are obtained from a “golden model” hosted
in the cloud [3]. However, retraining on local edge servers [3] can
negatively impact inference accuracy and latency due to limited
GPU resources and resource competition with inference executions.
Fig. 3 illustrates the timeline of the continual learning process,
which starts at 0ms and completes at 40s. During this time, infer-
ence requests that arrive cannot benefit from the retrained models.
To reduce the latency of the retraining process, we could allocate
more resources to it. However, this would leave fewer resources
for inference tasks, which may cause them to miss their SLOs.
Therefore, conducting both retraining and inference serving for
multi-model applications in an edge server poses a challenge for
GPU resource allocation to tasks to satisfy inference latency SLOs
while maximizing the average accuracy of all applications.

Figure 3: Continual learning and incremental retraining in
AdaInf.

The challenge of resource allocation becomes even more formi-
dable in the context of multi-model applications for several reasons.
First, each application requires significantly more computing re-
sources for both retraining and inference compared to single-model
applications. Second, addressing the challenge while considering
the dependencies of inference tasks on the retraining tasks, as well
as the interdependencies between the inference tasks themselves, is
non-trivial. Finally, when scheduling resources for multiple DAGs,
there can be an enormous number of potential solutions. A heuris-
tic [3] enumerating solutions to find the best one, or solving an
optimization problem [10], cannot meet the short scheduling time
requirement, which is critical for satisfying SLOs.

Within our knowledge, there has been no research devoted to
tackling this challenge. To address the research gap, we propose a
method called incremental retraining. It retrains a model as much as
possible every time before it is used by an inference task, utilizing

spare time within the SLO. For example, as shown in Fig. 3, if an
application has a 400ms SLO and the inference needs 200ms to
complete, the retraining is executed for 200ms. If the inference
needs 300ms to complete, the retraining is executed for 100ms. To
gain more time for retraining within the SLO, we propose using
early-exit structures [11].

In this paper, we first conducted real trace-driven experimental
analysis for the multi-model application scenario running both
inference and retraining tasks for each model (§2). As far as we
know, this is the first study of its kind and the key findings include:

(1) Not all models of an application are impacted by data drift,
and different models are impacted by different degrees.

(2) Incremental retraining can significantly improve accuracy.
(3) Early-exit structures can help improve accuracy by saving

more time for retraining.
(4) CPU-GPU memory communication constitutes a significant

portion of the inference latency, and different data types
have different reuse time latencies.

By leveraging these observations, we propose a data drift Adaptive
scheduler for accurate and SLO-guaranteed Inference serving at
edge servers (AdaInf) for multi-model applications. AdaInf nov-
elly uses the incremental retraining. Specifically, it consists of the
following major methods.
(i)Data drift-aware retraining-inferenceDAGgeneration (§3.2).
AdaInf periodically (e.g., 50s) identifies the DNN models of each
application that are impacted by data drift and their impact degrees,
which are used to determine the number of retraining samples to
expedite retraining while retaining accuracy. It builds a DAG that
incorporates both retraining tasks and inference tasks for each ap-
plication to facilitate GPU resource allocation and task executions.
(ii)Data drift-aware GPU space and time allocation (§3.3). Be-
fore each time session (e.g., 5ms), AdaInf allocates GPU resource to
the tasks of all applications in the session. Specifically, AdaInf splits
the total GPU computation space (e.g., 4 GPUs) among the appli-
cations based on their SLOs. For each application, it splits the GPU
time (i.e., latency SLO) between the retraining tasks and inference
tasks (based on the incremental retraining idea). Then, it further
splits the GPU time for retraining among the retraining tasks based
on their impact degrees and decides the optimal request batch size
for the inference tasks to minimize inference latency. Additionally,
AdaInf chooses an optimal early-exist structure of each application
to leave more time for retraining to increase accuracy.
(iii)CPU-GPU memory communication minimization (§3.4).
Contrary to the existing works [12–17] that focus on minimizing
the CPU-GPU memory communication for the training of a single-
model application, AdaInf leverages the interdependency between
multiple retraining and inference tasks of a multi-model applica-
tion for this purpose. Specifically, it maximizes the usage of GPU
memory contents before they are evicted to the CPU memory, and
first evicts GPU memory contents that will be reused later.

Our extensive real trace-driven experimental evaluation (§5)
shows that AdaInf increases up to 21% accuracy and reduces up to
54% SLO violation compared to existing methods, with a 2ms sched-
uling time. The current method requires four times the amount of
GPU resource on the edge server to achieve a comparable accuracy
of 96% as AdaInf. Note that AdaInf is also applicable to single-
model applications. This work does not raise any ethical issues.

474



AdaInf: Data Drift Adaptive Scheduling for Multiple-Model Inference Serving at Edge Servers ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

(a) Impact of data drift on accuracy (b) Inference requests using updated
model in Ekya

Figure 4: Impact of data drift on the application.

2 EXPERIMENTAL ANALYSIS
We conducted experimental analysis based on the video surveil-
lance application shown in Fig. 1. As [3], we used the TinyYOLOv3
model for object detection, the MobileNetV2 model for vehicle type
recognition, and the ShuffleNet model for person activity recogni-
tion. We used the Jackson Hole dataset [11], which contains 200
hours of images from a real video surveillance system deployed
in Jackson Hole, Wyoming, USA. The first 40% of the dataset was
used to initially train the models. The inference requests were gen-
erated for 1000s, where each request is an image from the dataset.
The experiments were conducted on an AWS EC2 instance of type
p3.2xlarge. It has 1 Nvidia V100 GPU with 5760 computation cores,
16 GB GPU memory, and 2.3 GHz Intel processor with 8 CPU cores
and 61 GB of CPU memory. Unless otherwise specified, in each
50s time period, we executed the retrainings of all the models first
and then all the inference tasks. As [18], the inference request rate
followed the Twitter trace [19], which resembles real-world infer-
ence workload. The percentage of all inference requests (for vehicle
type and person activity outputs in Fig. 1) in a time period that are
predicted correctly is the accuracy of the time period.

In our experimental analysis, we measured Ekya [3] as it is the
related work closest to AdaInf. To handle data drift, Ekya aims to
satisfy the resource demands of both retraining and inference tasks
and maximize the average accuracy for single-model applications.
It achieves this by using a heuristic that moves resources between
tasks if this increases the average accuracy and finally chooses
the solution with the maximum average inference accuracy. It also
determines the configuration for each task such as the number of
iterations for retraining and the video frame resolution for infer-
ence. However, Ekya executes a retraining task entirely, so during
the retraining time, any inference request received cannot benefit
from the retrained models [3], leading to decreased accuracy. Fur-
thermore, Ekya is not currently equipped to handle multi-model
applications.

2.1 Impact of Data Drift on Accuracy
Fig. 4a shows the accuracy of each time period with and without
retraining. The video surveillance application with retraining pro-
vides 0%-27% higher accuracy than that without retraining. This
is because street situation may rapidly change. For example, at
a certain timestamp, most of the vehicles may be personal cars,
but after a short interval, e.g., 50 seconds, most of the vehicles are
police cars and ambulances due to an accident, thus changing the
distribution of the vehicle types. The model that is trained only

on the initial training data cannot capture the distribution change,
thus resulting in low accuracy. This result indicates the importance
of performing retrainings at short time intervals to handle data
drift. We used Ekya to represent the continual learning methods.
Fig. 4b shows that only 53%-60% inference requests use the updated
model at each time period in Ekya.

Observation 1: There is a sizable drop in the inference accuracy
due to data drift but only 53%-60% inference requests can use the
retrained model.

Fig. 5 shows the accuracy of the three models in the application
in each time period with and without retraining. Fig. 6 shows the
Jensen-Shannon divergence [20] of the class label distributions of
the tasks in consecutive time periods, indicating the data distri-
bution change over time [21]. The object detection model did not
suffer accuracy loss from data drift while the person activity and
vehicle type recognition models experienced around 0%-9% and
0%-15% accuracy loss, respectively. This can be attributed to the
data distribution change from Fig. 6. The figure shows that for the
object detection task, the overall distribution between vehicles and
persons (i.e., the percentages of objects that fall under the vehicle
category and the person category) remained almost constant across
all time periods, and the data drift changed the distribution of vehi-
cle types by 0.1%-26% more than that of person activities over the
time periods.

Observation 2: Not all models of an application are impacted by
data drift.

Our results show that the vehicle type recognitionmodel suffered
around 0%-6% more accuracy loss compared to the person activity
recognition model.

Observation 3: In an application, among the models impacted by
data drift, different models are impacted differently.

2.2 Early-Exit Structure for Inference
For this experiment, we considered the inference requests of an ap-
plication received within a time session of 5ms as a job [10], which
has 400ms SLO. We created all possible early-exit structures of the
application, where each structure includes an early-exit structure
for each model of the application. We created the early-exit struc-
tures of a model by choosing the layer after every 3 layers of the
full structure as an early-exit point as in [22]. There were total 81
early-exit structures of the application. Due to space limit, we only
report the performance of the early-exit structure that achieves the
highest accuracy. It is possible to develop a framework to automate
the creation of the early-exit structures of a model. It is out of the
scope of this paper.

We tested three methods: Early-exit structure with incremental
retraining (Early-inc), Full structure with incremental retraining
(Full-inc), and Early-exit structure without any retraining (Early-
w/o). Fig. 7a shows the accuracy of these methods at each time
period. Fig. 7b shows the total retraining time and percent of re-
training samples used in retraining at each time period of Early-inc
and Ekya. Full-inc achieves 0%-4% higher accuracy than Ekya since
in Ekya, the inference requests received before the retraining com-
pletion time (20-23s from Fig. 7b) cannot use the retrained model.
The incremental retraining enables each job to use a model that
has been retrained to a certain extent, leading to higher accuracy.

475



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Shubha et al.

(a) Object detection model (b) Person activity recognition model (c) Vehicle type recognition model

Figure 5: Impact of data drift on each model of the application. Figure 6: Change in data distribu-
tion across time.

(a) Accuracy (b) Retraining time and percentage of
retraining samples

Figure 7: Early-exit structure with incremental retraining
provides better accuracy.

Early-inc achieves 0%-6% higher accuracy than Full-inc, 0%-10%
higher accuracy than Ekya, and 21%-23% higher accuracy than
Early-w/o. These results show that though an early-exit structure
reduces accuracy, using the spare time gained from the shorter in-
ference latency of the early-exit structure for incremental retraining
increases the accuracy significantly. Also, retraining is important
to ensure high accuracy.

The total retraining time and percentage of retraining samples
at a time period of Early-inc are close to those of Ekya. This shows
that by performing retraining incrementally in multiple steps at a
time period, incremental retraining ultimately does not receive less
time for retraining compared to continual learning.

Overall, the results show that it is possible to find an early-exit
structure to improve accuracy in incremental retraining. Note that
this observation might not hold for a randomly chosen early-exit
structure. Hence, we need to carefully choose the optimal early-exit
structure as indicated in §3.3.2.

Observation 4: Incremental retraining improves accuracy, and
using an optimal early-exit structure with incremental retraining
could significantly improve accuracy.

2.3 Optimal Request Batch Size
In order to maximize the resource utilization of GPU, the requests
in a job are executed in batches [23]. The worst-case latency [23]
refers to the time required to complete all the request batches in a
job. Fig. 8 illustrates the average per-batch latency and the average
worst-case latency for different request batch sizes. The figure
shows that there exists an optimal request batch size of 16 which
generates the lowest worst-case latency.

Observation 5: In a multi-model application scenario, there exists
an optimal request batch size that minimizes the worst-case latency.

Figure 8: Average latency at a
time session vs. request batch
size.

Fig. 9 shows the av-
erage worst-case latency
for different request batch
sizes when the allocated
GPU space changes. The
optimal batch size is 4,
8, 16, and 16 when the
allocated GPU computa-
tion space (space in short)
equals to 25%, 50%, 75%,
and 100%, respectively. Fig. 10
shows the average worst-
case latency for different request batch sizes for the full structure
and three randomly chosen early-exit structures of the application.
The optimal batch size is 16, 32, 32, and 4 for the different structures,
respectively.

Observation 6: The optimal request batch size is influenced by the
allocated GPU space and the early-exit structure of an application.

Figure 9: Average latency at
a time session with varying
GPU space.

Figure 10: Average latency at
a time session with varying
structures.

2.4 GPU Memory Communications
GPU memory contention is common in DNN jobs, requiring some
contents to be evicted to CPU memory. Existing work on CPU-GPU
memory communication [12–14] or memory content reuse [15–
17] only focuses on single-model training and does not consider
multi-model applications or concurrent running of inference and
retraining. Our scenario is uniquely featured by multi-model appli-
cations including both retraining and inference tasks of multiple
models with interdependencies expressed by a DAG. As [17], we
call the inputs to the first layer and the outputs generated by the
layers (i.e., first, hidden, and last layer) as intermediate outputs. In
our scenario, the GPU memory is more likely to be insufficient to
host all the parameters and intermediate outputs generated by the
tasks that are needed later on, thus causing CPU-GPU memory

476



AdaInf: Data Drift Adaptive Scheduling for Multiple-Model Inference Serving at Edge Servers ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

communications. First, parameter values updated by the retraining
of a model will be used during the inference of the same model.
Second, the intermediate output generated by the last layer during
the inference of a model will be used in the inference of the next
model(s) in the DAG sequence. In addition, different inference re-
quests in a request batch run the same models in the DAG. Also, the
next job of an application may reuse the contents of the previous
job of the application.

Figure 11: CPU-GPU memory
communication latency.

Fig. 11 decomposes the
per-batch inference latency
(shown in Fig. 8) into com-
munication time between
CPU memory and GPU
memory and the actual
computation time in GPU
space for different batch
sizes. The communication
time accounts for around
24% of the latency. For in-
ference in a single-model application scenario, this time accounts
for around 17% of the latency [17].

Observation 7 : When executing the retraining and inference
tasks of multi-model applications in an edge server, the CPU-GPU
memory communication time constitutes a significant portion of
the overall inference latency.

Next, we study thememory content reuse in the Early-incmethod.
While the GPU was retraining the models of the application, we
chose a random timestamp and measured the time latency after
which each content (i.e., a layer’s intermediate output or parameter
values) in the GPU memory at that timestamp is reused by any
model. We did the same while the GPU was executing the infer-
ence of the models. Fig. 12a shows the CDF of the reuse time of
different memory contents. We see that the intermediate outputs in
inference, parameters in retraining, intermediate outputs in retrain-
ing, and parameters in inference are reused within 0.01ms-1.6ms,
0.02ms-6ms, 0.02ms-7.5ms, and 67ms-68.6ms, respectively.

(a) Reuse time of memory contents. (b) Reuse time of memory contents
across tasks in a DAG.

Figure 12: Reuse time latency of memory contents.

Fig. 12b shows the CDF of the reuse time latency of the mem-
ory contents between tasks in the DAG. The updated parameter
values from the retraining of the vehicle recognition model were
reused by its inference task, and the last layer’s intermediate output
of the object detection model was reused by the inference of the
vehicle recognition model. The intermediate output and updated
parameters are reused within 0.01ms-0.02ms and 0.01ms-1.65ms,
respectively.

Figure 13: Reuse time of param-
eters across jobs.

Observation 8: Memory
content reuse occurs not
only inside one model (be-
tween retraining and infer-
ence) but also between the
dependent tasks in a DAG.
Also, the reuse time laten-
cies of different types of
data from different tasks
in a DAG are different.

Next, we study the
reuse of the memory contents of a job by the next job of the same
application in Early-inc. When the first job is completed, we mea-
sured when the current memory contents are reused. Fig. 13 shows
the CDF of the reuse time latency for the parameters of the first
job. We do not show the intermediate outputs used in retraining or
inference of the first job here as we found they were never reused.

Observation 9: The parameters from a job will be reused by the
next job but the intermediate outputs will not be reused.

3 SYSTEM DESIGN OF AdaInf
3.1 Overview
Motivated by Observation 1, and by leveraging other observations,
we propose AdaInf. For each application, at the beginning of each
time period𝑇 (e.g., 50s), AdaInf calculates the impact degree of each
model and generates a retraining-inference DAG to facilitate retrain-
ing and inference task resource scheduling and execution, as shown
in Fig. 14. Before each time session (e.g., 5ms), AdaInf schedules
resource allocation to inference requests in the time session (pre-
dicted based on request rate as in [10]) and their model retrainings.
The scheduling takes around 2ms (shown in §5), so at timestamp
𝜏 , AdaInf performs scheduling for time session [𝜏 + 2, 𝜏 + 7)ms. A
time session has multiple jobs and each job is for one application.
In a job, each model has an inference task (consisting of all requests
in the time session) and possibly a retraining task. AdaInf uses
spare time after inference task execution for incremental retraining,
while satisfying its SLO.

50s

……
Inference requests in 5ms

Generate DAG Generate DAG

Job1 for App1

Job2 for App2

Jobn for Appn
……

Figure 14: Time periods for generating DAGs and time ses-
sions for scheduling.

In scheduling, AdaInf decides:
(1) the request batch size for each job,
(2) how much GPU space is allocated to each job to be used by

each task (including retraining and inference) in the job’s
DAG,

(3) the optimal DNN structure of each inference task, and GPU
time allocated to the retraining task and the inference task
of every model in a job,

(4) and the number of retraining samples and which samples to
use for each retraining task given allocated GPU space and
time.

477



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Shubha et al.

AdaInf has three major methods detailed as follows.

3.2 Data Drift-aware Retraining-Inference DAG
Generation

Determining Data Drift Impact. Guided by Observation 2, for
each application, AdaInf periodically judges whether each model
will be impacted by data drift in the new training data (generated
in the previous time period) and hence the necessity to retrain
the model, and calculates the impact degrees of the models that
need retraining (based on Observation 3). To do this, AdaInf first
identifies 𝑆 (a pre-defined value) new training samples that diverge
the most from the old training samples from time period 𝑇 − 1.
These samples are more prone to be misclassified by the current
model [8]. To find these samples, AdaInf calculates the Cosine dis-
tance of the feature vector of every new sample with the mean
feature vector of the old training samples, and chooses the 𝑆 new
training samples whose Cosine distances are the highest. As the
feature vectors are high-dimensional, before calculating the Cosine
distances, AdaInf reduces the number of features by applying prin-
cipal component analysis [24] on the vectors to get more accurate
distance results. Next, AdaInf gets the prediction output of these 𝑆
samples using the current full structure of model𝑚 and calculates
its accuracy 𝐼 ′𝑚 . Let us denote the accuracy of the initially trained
version of model𝑚 by 𝐼𝑚 . If 𝐼 ′𝑚 < 𝐼𝑚 , AdaInf decides that model𝑚
will be impacted by the data drift and needs retraining. To ensure
the correctness of the process identifying the models requiring re-
training, AdaInf then gradually increases the value of 𝑆 each time
to repeat the process. It stops when there is no change in the results
for consecutive 𝑛 (e.g., 4) times. Finally, for the identified models,
AdaInf calculates the impact degree of each model𝑚 by 𝐼𝑚 − 𝐼 ′𝑚 .

Figure 15: Retraining-inference DAG of the video surveillance ap-
plication.

Unlike previous continual learning that retrains all models and
uses all retraining samples to retrain model 𝑚, AdaInf does not
retrain the models that will not be impacted by the data drift and
determines the number of retraining samples for the retraining of
model𝑚 based on its impact degree to reduce the negative impact
on the accuracy from the data drift (details are in §3.3).

GeneratingRetraining-InferenceDAG.Unlike previouswork [3]
in which many inference requests cannot use the retrained model,
AdaInf aims to retrain a model as much as possible before using
it for the next inference task in order to increase inference ac-
curacy while meeting the SLO. To this end, for each application,
AdaInf forms a DAG to denote the dependency between the re-
training and inference tasks of multiple models, as illustrated in
Fig. 15. Each vertex of the DAG represents a retraining task or an
inference task of a DNNmodel of the application. A model’s retrain-
ing task always points to its inference task. Note that if model𝑚
does not need retraining at the time period, the DAG does not have
its retraining task. The retraining vertex of a model has an attribute
“impact degree”. During each time session, the tasks in a job are
executed based on the DAG, and each task uses its allocated GPU
space and time resources determined by the methods introduced in
§3.3 and the execution latency is further reduced by the methods
presented in §3.4.

Job 3: 350ms
400ms

: retraining : inference

300ms200ms0ms

Job 2: 300ms

SLO

100ms

Job 1: 400ms

Step2: GPU time 
allocation across models

St
ep

1
: 

G
P

U
 s

p
ac

e 
al

lo
ca

ti
o

n
 a

cr
o

ss
 jo

b
s

Figure 16: Steps of GPU space and time allocation.

3.3 Data Drift-aware GPU Space and Time
Allocation

Before each time session 𝑡 , AdaInf conducts scheduling (for (1)-(4)
in §3.1) for retraining tasks and inference tasks predicted to occur in
the time session. AdaInf has two steps in the scheduling as shown
in Fig. 16.
(i)GPU space division among applications (§3.3.1). First, for
the jobs at time session 𝑡 , AdaInf divides the GPU resource space
among the jobs (i.e., applications) based on their required GPU
resource space to satisfy SLOs.
(ii)GPU time division among the DAG vertices of an appli-
cation (§3.3.2). Second, for each job, AdaInf splits the GPU time
of the allocated resource between retraining and inference with
the constraint of satisfying the SLO, further splits the GPU time
among retraining tasks based on their impact degrees, and then
determines training samples for each retraining task accordingly
and the optimal request batch size for the inference tasks. To leave
enough time for retraining, AdaInf chooses an early-exit model
structure for inference to satisfy its SLO without compromising
accuracy.

3.3.1 GPU Space Division among Applications. Let’s use 𝑇𝑎ms to
denote the average time to complete all inference requests in a
time session. Then, since each time session equals 5ms, there will
be 𝑠 = 𝑇𝑎/5 time sessions with concurrently running jobs. Hence,
AdaInf distributes the total GPU resource (denoted by 𝐺) evenly
among the 𝑠 sessions. For each session, AdaInf then distributes the

478



AdaInf: Data Drift Adaptive Scheduling for Multiple-Model Inference Serving at Edge Servers ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

allocated GPU space to different jobs in proportion to each job’s
required GPU space to complete all of its requests to satisfy its SLO.
To determine the GPU space required by a job, AdaInf first finds
the time latency of the job if it is allocated with one GPU and then
scales the GPU space to satisfy its SLO. The details of this approach
are presented below.

Based on Observation 5, for each application, AdaInf performs
offline profiling to find an application’s per-batch inference latency
based on the initial DAG of the application that does not include
any retraining task (e.g., the DAG in Fig. 1) for a set of request batch
sizes when it is allocated with an entire GPU. Based on this profil-
ing, during scheduling, AdaInf calculates the worst-case inference
latency for a job for every request batch size when an entire GPU is
allocated to the job. It equals the product of the per-batch inference
latency and the total number of batches. Then, AdaInf chooses the
request batch size that results in the lowest worst-case inference
latency of job 𝑖 , denoted by 𝐿𝑖𝑤 .

Next, AdaInf calculates the required GPU space of each job 𝑖

(denoted by𝐺𝑖 ) to adjust the worst-case inference latency from 𝐿𝑖𝑤
to its latency SLO (denoted by 𝐿𝑖𝑠 ) using a non-linear regression
model as described in [3]. The model takes the chosen batch size,
𝐿𝑖𝑤 and 𝐿𝑖𝑠 as inputs, and outputs 𝐺𝑖 . Finally, job 𝑖 receives 𝐺𝑖∑

𝑖 𝐺
𝑖

fraction of the GPU resource allocated to time session 𝑡 , denoted
by 𝐺𝑖

𝑎 .
Observation 6 shows that the allocated GPU space affects the

optimal batch size. Therefore, AdaInf adjusts the batch size of
the job given the allocated GPU space. To do this, AdaInf iterates
through the set of request batch sizes to scale the worst-case latency
when the GPU space changes from an entire GPU to the actually
allocated GPU space using a regression model as described in [3].
The regression model takes the batch size, the actually allocated
GPU space, and worst-case latency for the batch size with an entire
GPU allocation as inputs, and outputs the scaled worst-case latency
for the batch size. Finally, AdaInf selects the request batch size that
provides the lowest-scaled worst-case latency.

3.3.2 GPU Time Division among the DAG Vertices of an Application.
The execution of the tasks of a job follows the sequence in its
DAG as shown in Fig. 15 and each task uses its allocated resource
space 𝐺𝑖

𝑎 . AdaInf splits the total SLO latency of the job among the
DAG vertices. It first splits the SLO latency between the inference
operation and retraining operation. Then, it further distributes the
allocated time for retaining operation among the retraining tasks
in order to increase accuracy. The details of these two steps will
be presented in the following after we explain the selection of the
early-exit structure.

Based onObservation 4, AdaInf employs the early-exit technique.
For each DNNmodel of an application, AdaInf creates several early-
exit structures offline in the samemanner as described in [22]. Then,
AdaInf performs offline profiling to find the per-batch inference
latency of every early-exit structure of a model for a set of request
batch sizes if an entire GPU is allocated to the structure. Also,
AdaInf stores the accuracy of every early-exit structure on the
initial test data, and the stored accuracy is updated by the accuracy
of the structure on the 𝑆 new training samples (introduced in §3.2)
at each time period.

During scheduling, AdaInf traverses each inference task vertex
of the DAG of an application and chooses a structure for it. Suppose
𝑚 is the corresponding model. If there is no retraining task vertex
in the DAG for model𝑚, AdaInf uses the full structure of𝑚 during
inference execution since it does not need to save time for retraining.
Otherwise, AdaInf first takes only those early-exit structures of
model𝑚, whose accuracy values are no less than the application-
specific pre-known threshold 𝐴𝑚 (the impact of 𝐴𝑚 is discussed
in §5.3) and selects the one with the lowest per-batch inference
latency. To do this, for each structure, AdaInf uses a similar non-
linear model as described previously to scale the profiled per-batch
inference latency when the GPU space changes from the entire
GPU to the actually allocated GPU space.

After a structure is chosen for the model of each inference task,
we get an early-exit structure of the whole application. Based on
Observation 6, AdaInf adjusts the batch size of the application given
the chosen early-exit structure using a non-linear model as men-
tioned above. Finally, AdaInf selects the request batch size that
provides the lowest-scaled worst-case latency.

Next, AdaInf calculates the total inference time of the job, and
then the spare time in the SLO latency used for retraining in order
to satisfy the SLO while maximizing accuracy. We present the
details below. After allocating GPU space to an inference job, for
the parallel tasks in the DAG, the GPU kernel schedules these tasks
in a time-sliced manner [25] in the allocated space. Therefore, the
total time taken by the set of all inference tasks of the job 𝑖 (denoted
by 𝐼 𝑖 ) is calculated by

∑
𝑘∈𝐼 𝑖 𝑙

𝑖
𝑘
, where 𝑙𝑖

𝑘
is the latency execution of

the 𝑘𝑡ℎ inference task of job 𝑖 . Then, the total spare GPU time that is
allocated to the retraining tasks of job 𝑖 equals: 𝑇 𝑖

𝑟 = 𝐿𝑖𝑠 −
∑
𝑘∈𝐼 𝑖 𝑙

𝑖
𝑘
.

Then, this remaining time is divided among the retraining tasks
according to their impact degrees to increase accuracy. That is,
retraining tasks with higher impact degrees receive more time and
training samples for retraining, thus mitigating more influence
from data drift. Specifically, if the degree is 𝑑𝑖

𝑗
for the 𝑗𝑡ℎ retraining

task of job 𝑖 , its allocated time is 𝑇 𝑖
𝑟 ·

𝑑𝑖
𝑗∑

𝑗 𝑑
𝑖
𝑗

.

Based on the allocated GPU time to a retraining task, AdaInf then
decides a retraining setting (i.e., the number of retraining samples,
retraining data batch size, and the number of epochs) to maximize
accuracy. To do this, AdaInf performs an offline profiling to find the
retraining latency and accuracy for each retraining setting when an
entire GPU is allocated to retrain the model. Based on this profiling
and the allocated GPU time for the retraining task, during sched-
uling, AdaInf chooses a retraining setting for the retraining task
using a non-linear model as mentioned above. Suppose the number
of retraining samples is 𝑅𝑖

𝑗
for the 𝑗𝑡ℎ retraining task of job 𝑖 , then

AdaInf selects 𝑅𝑖
𝑗
samples from the new retraining samples that

deviate the most from the old training samples using the approach
introduced in §3.2.

Now, due to concurrently running jobs (in different sessions)
of an application, when a job 𝑖 starts to retrain a model of the
application, there may be other jobs that have already completed
or are retraining the same model. In such a case, job 𝑖 starts the
retraining by taking the average of the current parameter values of
the different versions of the model as the initial parameter values to
generate better accuracy [26]. To avoid redundant training, the job

479



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Shubha et al.

does not use retraining samples that have been used or are being
used by other jobs.

3.4 CPU-GPU Memory Communication
Minimization

At a time, the GPUs on an edge server concurrently run the jobs
from different time sessions, each of which has different jobs. Each
job has several inference requests and retraining task for each of
its models. All the tasks running on a GPU share the same GPU
memory, which is limited. To address the issue in Observation 7 ,
we leverage the features of the scenario of both retraining and
inference running for multi-model applications (Observation 8 and
Observation 9) to propose the following strategies to reduce the
CPU-GPU memory communications and decrease latency.
3.4.1 Maximizing GPUMemory Usage. Different inference requests
in a batch run the samemodels in the DAG of the application. There-
fore, all requests use the same parameter values of a model layer.
Each request is executed concurrently with other requests, without
knowledge about which model layers are executed in each of the
other requests. When a request completes its execution of a model
layer, the layer’s parameters may be sent to the CPU memory due
to lack of space in GPU memory. After some time, another request
has to fetch them from the CPU memory to the GPU memory.

To avoid such CPU-GPU memory communications, AdaInf runs
the execution of a single model layer for all the requests in a batch
at the same time. This way, all the inference executions of a model
layer are completed before the parameters of the layer are evicted to
CPU memory. AdaInf applies the same strategy for the retraining
batch while retraining a model. In model retraining, all retraining
samples in a batch use the same parameter values of the model.
AdaInf does not evict the parameters of a model layer from GPU
memory until the layer is retrained on all the samples in the batch.

In addition, based onObservation 9, when a job completes, AdaInf
evicts all intermediate outputs of the job but retains the updated
parameters of the job, as they may be needed again by the next job
of the same application.

Consequently, in order to release enough space in the GPU mem-
ory, AdaInf prioritizes evicting the contents that should be evicted
first and leaves the contents that should not be evicted until the
end. However, determining which contents should be selected for
eviction in each category is non-trivial. To address this issue, we
propose a method described below.
3.4.2 Priority-based Eviction of GPU Memory Contents. Consid-
ering Observation 8 and the fact that the latency SLOs of differ-
ent applications can vary, we propose a method for determining
the priority of contents to remain in GPU memory. Specifically,
AdaInf prioritizes the memory contents that will be used much
earlier than other contents and/or have tighter SLOs to remain
in the GPU memory. AdaInf determines task priority based on
various factors, including the causes for data reuse as described
in §2.4. Specifically, AdaInf takes into account the interdependency
between tasks in the DAG, as well as the data type and content
reuse time latency.

We use 𝑅𝑐 to denote the reuse time latency of content unit 𝑐 ,
which can be estimated using profiling, as described in [15]. Then,
the score of content 𝑐 is calculated as follows: 𝑆𝑐 = (1− 𝛼)𝑅𝑐 + 𝛼𝐿𝑖𝑠 ,

where 𝛼 ∈ (0, 1) is a weight. Contents with higher scores are evicted
from the GPU memory. However, calculating 𝑆𝑐 for each content
and finding the contents with the highest 𝑆𝑐 values take time. To
reduce the time, guided by Observation 8, AdaInf chooses a certain
data type (as shown in Fig. 12) to evict first and then among the
contents of this type, it chooses those with the highest 𝑆𝑐 values
for eviction. Note that the data type here is also distinguished by
its task in the DAG. Through offline analysis for each application,
AdaInf obtains a range for the reuse time latency of each data type.
AdaInf takes the mean value of the range as the value of 𝑅𝑐 of the
data type. Thus, each data type also has a 𝑆𝑐 value, and those types
with higher 𝑆𝑐 values will be chosen for eviction first.

Among the evicted memory contents, lower-scoring contents
are kept in the PIN memory portion of the CPU memory so the
contents can be sent back to the GPU memory earlier than higher-
scoringmemory contents. PINmemory is a small portion of the CPU
memory that takes less time to communicate with the GPUmemory
compared to the remaining portion of the CPU memory [13].

Reduced CPU-GPU memory communications not only helps to
reduce task latency, but also saves more time for retraining. To
integrate these strategies into the scheduling in §3.3, AdaInf uses
these strategies in offline profilings mentioned in §3.3. Hence, the
profilings help to calculate the inference task latency with these
strategies, and then the spare time in SLO latency for retraining.

4 EXPERIMENTAL SETUP AND
IMPLEMENTATION

Applications and Datasets. Unless otherwise specified, the exper-
iment settings are the same as those in §2. The latency SLO of each
application (with a range [400, 600]ms) was taken from [10]. By
default, we experimented with eight concurrent applications, which
include the video surveillance application described in §2, six appli-
cations from [10], and one application from [27] that has a complex
DAG. The datasets of the applications were from [10, 27–33].

The applications are shown in Fig. 17. The social media appli-
cation has a more complex DAG than the other applications. The
application categorizes posts (i.e., safe for viewing or not) based
on the linked images and suggests a person to tag in the images
using an image recognition model. Additionally, the application
translates the post language to English if necessary using a lan-
guage translation model. In each oval, we show the model name in
bracket for the corresponding inference task. The MobileNet and
ShuffleNet models are designed to fit into the limited resources of
end devices and edge servers. We compressed the remaining models
using DeepSpeed compression library [34].

For the experiment with a varying number of applications, we
obtained the additional applications and datasets from [23] as fol-
lows.
•Analyzing video games: It first runs object detection using the
SSDLite model, and then runs text recognition using STN-OCR and
object recognition using ResNet18.
• Rating dance performance: It first runs person detection using
TinyYOLOv3, and then runs pose recognition using Shufflenet.
• Estimating response to public bill boards: It first runs object de-
tection using SSDLite, and then runs face recognition using Mo-
bileNetv2 and gaze recognition using ResNet18.

480



AdaInf: Data Drift Adaptive Scheduling for Multiple-Model Inference Serving at Edge Servers ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

Figure 17: DAGs of the applications in the experiments.

• Finding bike-rack occupancy on buses: It runs object detection using
TinyYOLOv3.
•Matching vehicle to amber alert description: It first runs text recog-
nition using STN-OCR and object detection using SSDLite, then
runs vehicle make/model recognition using ResNet18.
• Rating corporate logo placement: It first runs object detection using
TinyYOLOv3, then runs icon recognition using MobileNetv2 and
human pose recognition using Shufflenet.
Testbed. As [3], we used an Amazon AWS EC2 p3.8xlarge server
with 4 GPUs as the edge server. The total memory of all the GPUs
combined is 64GB, and the GPUs are interconnected via NVLinks.
The server has a 2.3 GHz Intel processor with 32 CPU cores and 244
GB of CPU memory. We also varied the number of GPUs and used
an AWS server of type p3.2xlarge and p3.16xlarge to perform the
1-GPU and 8-GPU experiments, respectively. We used two AWS
servers of type p3.8xlarge to perform the 16-GPU experiments.
Comparison Methods.
• Ekya [3]: At the beginning of each 50s time period, Ekya conducts
scheduling as explained in §2. It uses a heuristic that tries various
possible resource allocations by moving resources between tasks
and chooses the one with the maximum average inference accuracy
for all applications.
• Scrooge [10]: For inference requests in 5ms, Scrooge solves an opti-
mization formulation that outputs the instance type, GPU amount
and batch size to satisfy latency SLOs and minimize monetary cost
of the cloud instances. The optimization takes around 100ms so
Scrooge schedules for all the 5ms time sessions within this 100ms.
After every 50s [3], it performs retraining on the cloud, which is

an AWS EC2 p3.16xlarge server with around 20Gbps bandwidth be-
tween the edge server. As Scrooge considers unlimited resource, we
made two changes. First, we modified the optimization formulation
by adding a constraint that the allocated GPU amount is no more
than the edge server’s GPU amount, and we denote this solution
by Scrooge. Second, after obtaining the optimization solution, we
allocated 𝐺𝑖∑

𝑖 𝐺𝑖
fraction of the total GPU amount to application 𝑖 ,

where 𝐺𝑖 denotes its required GPU amount, and we denote this
solution by Scrooge*.
Implementation.We developed AdaInf using C++ and Python.
We used Nvidia MPS [35] to divide the GPU resource. Each applica-
tion is treated as a CUDA Context and we used CUDA_MPS_ACTIVE_
THREAD_PERCENTAGE to assign a percentage of the total concurrent
threads to an application. The computation of one request in a re-
quest batch or one retraining in a retraining batch was executed in a
CUDA Stream. FromCUDA toolkit, we used cudaStreamWaitEvent
to make a stream wait for the completion of a model layer execu-
tion of the other streams, cudaMalloc for memory allocation in
GPU, cudaMemcpyAsync to execute CPU-GPU memory communi-
cations, cudaMallocHost for memory allocation in PIN memory,
and nvprof to measure the time for CPU-GPU memory commu-
nications. All offline profilings were performed on a Nvidia V100
GPU using Nvidia profiling tool [36]. Keras and Tensorflow were
used for the initial training, retraining, and inference executions.
The value of 𝛼 (in §3.4.2) was set to 0.4. 𝐴𝑚 (in §3.2) was varied
within [80%, 95%] for the models of different applications. 𝑆 was
initially set to 3% with an increase rate of 3% in each step. These
parameters are empirically determined. Determination and impact
of these values are discussed in §5.3.

5 PERFORMANCE EVALUATION
5.1 Comparison Results
The results show that Scrooge* performs similarly to Scrooge, so
we use Scrooge to represent both in the presentation below. We
report the average accuracy across all applications.
Accuracy. Fig. 18 shows the accuracy of the methods in differ-
ent experiment settings. AdaInf provides 11%-14% higher accuracy
than Ekya. This is because unlike Ekya, AdaInf uses the incremen-
tal retraining. Also, it uses the retraining samples that deviate the
most from the previous training data. In Ekya, the inference can
use the retrained model only when the model’s retraining has fin-
ished on all the retraining samples (which takes 20s-23s in Fig. 7b).
Also, AdaInf does not retrain the models that are not impacted
by data drift, and also determines the retraining time of the re-
training tasks based on their impact degrees. These leave more
GPU time for the retraining tasks that are more impacted by data
drift, thus achieving higher accuracy. Additionally, the early-exit
structures and the strategies for CPU-GPUmemory communication
reduction reduce the inference tasks’ execution latency and leave
more time for retraining, which also helps achieve higher accuracy.
AdaInf provides around 19%-21% higher accuracy than Scrooge.
The long communication time between the cloud and edge server
prevents many inference requests from using the retrained model.
From Table 1, the transmission time takes 34.1 seconds.

Fig. 18b shows as the number of applications increases, the av-
erage accuracy (over all the time periods) decreases due to higher

481



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Shubha et al.

(a) Accuracy vs. time. (b) Accuracy vs. no. of applications. (c) Accuracy vs. number of GPUs.

Figure 18: Accuracy comparison of different methods.

(a) Finish rate vs. time. (b) Finish rate vs. no. of applications. (c) Finish rate vs. number of GPUs.

Figure 19: Finish rate comparison of different methods. Figure 20: Latency.

workload and limited resource for retraining. Fig. 18c shows that
with the increase of the number of GPUs in the edge server, the
accuracies of both AdaInf and Ekya increase because of more
GPU resource for retraining. However, Scrooge’s accuracy does
not change because its retraining is performed on cloud. We also
see that only when Ekya uses 16 GPUs, its accuracy (95.6%) is sim-
ilar as that of AdaInf when it uses 4 GPUs (96.4%). This implies
that AdaInf achieves a four-fold higher GPU resource efficiency
while maintaining a similar accuracy level of 96% as Ekya.
Finish Rate. The finish rate for an application is defined as the
ratio (expressed in percentage) between the number of requests
that satisfy the latency SLO and the number of requests that come
to the edge server within a 1s window Fig. 19 shows the finish rate
comparison of different methods in different experiment settings.
AdaInf achieves around 50%-54% higher finish rate than Ekya. This
is because Ekya does not focus on maximizing latency SLO fulfill-
ment while this is a goal of AdaInf. AdaInf allocates GPU resources
based on application SLOs, and early-exit structures and strategies
for minimizing CPU-GPU memory communication reduce infer-
ence latency, resulting in a higher finish rate. Although Scrooge
offloads the retraining tasks to the cloud, AdaInf still generates
2%-4% higher finish rate than Scrooge by using early-exit struc-
tures and reducing CPU-GPU memory communication to expedite
inference. The reasons for the finish rate differences between the
methods are illustrated in Fig. 20, which shows the average latency
for retraining and inference, respectively, for all applications over
a 50s time period.

Fig. 19b shows that as the number of applications increases,
the average finish rate (over all the time periods) of each method
decreases due to higher workload and GPU resource limitation.
Fig. 19c shows that as the number of GPUs increases, the average
finish rate of each method increases due to more GPU resources
for inference. The influence on AdaInf and Scrooge is not obvious
since AdaInf aims to satisfy SLOs and Scrooge offloads retraining

to the cloud. The finish rate cannot reach 100% because the methods
schedule for the predicted number of inference requests, which may
differ from the actual number.
Time Overhead. Table 1 presents the average time overhead of
different methods for executing various components. AdaInf takes
4.2s for periodical DAG update, but it does not affect the job schedul-
ing or executions as it independently runs in the CPU. AdaInf takes
2ms and Scrooge takes 100ms for scheduling jobs in 5ms. Scrooge
solves a time-consuming optimization formulation. Ekya takes 8.4s
to make the scheduling decision for the jobs in 50s. It uses a time-
consuming heuristic that traverses every pair of tasks to check
whether transferring resource between the pair can improve accu-
racy. Scrooge takes 34.1s communication time to transfer 85.7GB
of data between edge and cloud during each retraining. The data
contents are the retraining samples sent from the edge server to
the cloud and the updated models from the cloud to the edge server.
AdaInf’s strategies are beneficial in reducing the CPU-GPU mem-
ory communication in a job, with only a 1ms overhead.
GPU Utilization. Fig. 21 shows the utilization of the GPUs at
each second for different methods. We measured the utilization
using Nvidia-smi. We report the average utilization of a GPU.

Figure 21: GPU utilization.

All methods result in close
or equal to 100% uti-
lization across time be-
cause each method exe-
cutes multiple concurrent
applications in the same
GPU. The inference re-
quest workload of an ap-
plication is usually insuffi-
cient to saturate the com-
putational capability of a GPU [37]. However, GPU space multiplex-
ing technologies (e.g., Nvidia MPS) enable concurrent execution

482



AdaInf: Data Drift Adaptive Scheduling for Multiple-Model Inference Serving at Edge Servers ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

Table 1: Time overheads of methods.

Periodical DAG
update in CPU

Scheduling
in CPU

Edge-cloud
communication time

Edge-cloud
transferred data amount

CPU-GPU memory
communication minimization

AdaInf 4.2s 2ms 0 0 1ms
Ekya 0 8.4s 0 0 0
Scrooge 0 100ms 34.1s 85.7GB 0
Scrooge* 0 100ms 34.1s 85.7GB 0

of multiple applications in a GPU, which helps fully utilize the
capacity of a GPU.

5.2 Effectiveness of Each Proposed Method
We created several variants of AdaInf as follows.
• AdaInf/I: It evenly divides the spare time among all the models
for retraining instead of considering impact degrees.
• AdaInf/U: It creates the retraining-inference DAG once and does
not update the models’ impact degrees.
• AdaInf/S: It evenly divides the GPU space allocated to a time
session among the jobs in the session.
• AdaInf/E: It uses the full structure instead of the early-exit struc-
ture of a model.
• AdaInf/M1: It does not apply the strategy to maximize GPU mem-
ory usage.
• AdaInf/M2: It does not apply the strategy of priority-based evic-
tion of GPU memory contents.

(a) Accuracy. (b) Finish rate.

Figure 22: Performance of different variants of AdaInf.

Accuracy. Fig. 22a shows the average accuracy across all time
periods for AdaInf and its different variants. The results follow:
AdaInf>AdaInf/M1>AdaInf/M2>AdaInf/S>AdaInf/E>AdaInf/
U>AdaInf/I. AdaInf achieves around 4% and 5% higher accuracy
than AdaInf/M1 and AdaInf/M2, respectively, which indicates the
effectiveness of the strategies in reducing CPU-GPU memory com-
munications to reduce inference latency and give more time to re-
training. AdaInf achieves around 7% higher accuracy than AdaInf/
S, which indicates the importance of considering the resource
demands of different jobs to satisfy SLOs in resource allocation.
AdaInf achieves around 8% higher accuracy than AdaInf/E, indi-
cating the efficacy of using early-exit structures to leave more time
for retraining. AdaInf achieves around 17% higher accuracy than
AdaInf/U, indicating the importance of considering the dynamic
change of the impact degree of a model across different time peri-
ods. AdaInf achie-ves around 18% higher accuracy than AdaInf/I,
which indicates the effectiveness of considering the impact degrees.
Finish Rate. Fig. 22b presents the average finish rate across all time
periods for AdaInf and its different variants. The results follow:
AdaInf=AdaInf/I=AdaInf/U>AdaInf/E>AdaInf/M1>AdaInf/
M2>AdaInf/S. AdaInf attains a finish rate approximately 3% higher

than AdaInf/E. This result demonstrates the effectiveness of us-
ing an early-exit model in achieving higher latency SLO fulfill-
ment. AdaInf achieves around 5% and 7% higher finish rate than
AdaInf/M1 and AdaInf/M2, respectively due to the effectiveness
of the two strategies for minimizing CPU-GPU memory commu-
nication. AdaInf achieves a 37% higher finish rate than AdaInf/S,
indicating the importance of dividing GPU resource based on jobs’
resource requirements to meet their latency SLOs. AdaInf/I and
AdaInf/U achieve similar finish rates as AdaInf but incur lower
accuracy as described above since they missing components help
increase accuracy instead of reducing latency, and they initially
allocate resources to satisfy SLOs.

5.3 Effect of Parameters
Determination of 𝑆 (in §3.2). Table 2 displays the detected models
impacted by data drift for the video surveillance application at the
second time period. “Person” and “Vehicle” refer to the person ac-

Table 2: Determination of parameter 𝑆
Value of 𝑆 (% of

retraining samples) 3% 6% 9% 12% 15% 18% 100%

Models impacted by
data drift X Person Person,

Vehicle
Person,
Vehicle

Person,
Vehicle

Person,
Vehicle

Person,
Vehicle

tivity recognition and vehicle type recognition models, respectively.
When 𝑆=18%, the result is the same as the previous 4 values, and
then AdaInf stops the process. We see the results are the same as
those when 𝑆=100%. Thus, our process can correctly identify which
models require retraining and it is also time-efficient as it does not
check all 100% of samples. We also verified the correctness of the
results from our approach for all other applications.
Influence of 𝛼 (in §3.4.2). While scoring each GPU memory con-
tent for eviction, 𝛼 determines which factor should be given more
importance between reuse time latency and SLO. Fig. 23 displays
the average accuracy and average finish rate of AdaInf for all the
applications across all the time periods for different values of 𝛼 .
Accuracy does not change much with the variation of the 𝛼 value.
For the finish rate, 𝛼 = 0.4 produces the highest finish rate. When
𝛼 < 0.4, the finish rate decreases because the SLO is given less
importance. It also decreases when 𝛼 > 0.4 because the reuse time

Figure 23: Influence of 𝛼 . Figure 24: Influence of 𝐴𝑚 .
latency of a memory content is given less importance. Thus, we set

483



ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Shubha et al.

𝛼 = 0.4 since it achieves an optimal tradeoff between reuse time
and SLO.
Influence of 𝐴𝑚 (in §3.3.2). 𝐴𝑚 is an application-specific pre-
known accuracy threshold for choosing early-exit structure options
of a model. Fig. 24 displays the average accuracy and average finish
rate across all the time periods of the video surveillance application
for varying values of 𝐴𝑚 for the vehicle recognition model of the
application. The 𝐴𝑚 values for the object detection and person
recognition models of the application were fixed at 90% and 95%,
respectively. As 𝐴𝑚 increases, the accuracy of the application in-
creases but the finish rate decreases. This is due to the fact that as
𝐴𝑚 increases, AdaInf selects an early-exit structure with higher
accuracy, but this structure requires more time for inference.

6 LIMITATIONS AND DISCUSSION
Design Challenge. While allocating GPU space among applica-
tions, AdaInf chooses the optimal request batch size of an appli-
cation assuming that it receives an entire GPU, and then adjusts
the size after allocating the GPU space and choosing an early-exit
structure of the application. We will explore how to directly decide
the optimal request batch size without any adjustment.
DNN Execution in CPUs. AdaInf does not focus on executing
the DNN models in CPUs. CPU execution incurs less monetary cost
than GPU execution. Hence, if the number of requests is low for
scheduling, we may execute the requests in CPUs, which may be
enough to satisfy SLOs.
GPU Type Heterogeneity. Currently, in AdaInf, retraining and
inference tasks for a job are executed within a single edge server
with GPUs of the same type. We will extend AdaInf to allocate
tasks to heterogeneous GPUs across multiple servers.
Offline Profiling. Similar to the existing inference serving sys-
tems [10, 18, 38], AdaInf needs to perform offline profiling. We
profiled for each combination of a batch size and an early-exit struc-
ture in a separate GPU of the same architecture (Nvidia V100). Note
that if we replace any of the constituent models of an application
with a new model, we need to do the profiling again.

7 RELATEDWORK
Inference Serving for Single-ModelApplications.Variousmeth-
ods have been proposed for inference serving in single-model ap-
plications on the cloud or edge servers to meet latency SLOs and/or
minimize costs [3, 18, 39–42]. Romero et al. [18] proposed a sys-
tem that uses integer linear programming formulation along with
pre-calculated performance-cost profiles on different hardware plat-
forms (i.e., CPU, GPU, ASIC) to choose the optimal hardware plat-
form for each inference request execution in order to minimize the
monetary cost while satisfying SLOs. Gujarati et al. [39] proposed
a system that drops the inference requests predicted to miss their
SLOs to leave more GPU resource to other requests in order to min-
imize the tail latency. Gunasekaran et al. [40] proposed a system
that finds the optimal number of models in an ensemble model to
maximize accuracy and satisfy SLOs. A group of methods [41, 42]
propose to use profiling to find the optimal configurations for the
inference tasks of each application to maximize accuracy with min-
imal GPU resource usage. These methods do not consider model
retraining to handle data drift. Bhardwaj et al. [3] proposed Ekya

that jointly conducts retraining and inference serving, but it may
suffer from lower accuracy and SLO violation in the multi-model
applications, as verified in §5.1. All of these methods do not consider
multi-model applications, which pose more formidable challenges
for both retraining and inference executions, as indicated in §1.
Several methods [15–17] use eviction technique by prioritizing
the memory contents that will be used much earlier than other
contents. However, these methods focus on single-model training
instead of multi-model applications that involve both retraining
and inference.
Inference Serving for Multi-Model Applications. A group of
methods focus on the inference serving of multi-model applications
by considering the DAG dependency [10, 23, 27, 37, 38, 43–49].
These methods also aim to satisfy SLOs and/or minimize monetary
cost. Hu et al. [10] used an optimization formulation to decide the
optimal GPU type and amount of the public cloud for each appli-
cation to maximize SLO fulfillment and minimize the monetary
cost. Shen et al. [23] proposed a modified bin-packing algorithm
to allocate GPU time to multiple applications in order to maximize
GPU resource utilization and SLO fulfillment. A group of meth-
ods [27, 37, 43–46, 48] use profiling to find the optimal request
batch size for each application with the goal of achieving both
overall high GPU utilization and SLO fulfillment of the application.
Another group of methods [47, 49] use regression-based profiling
to determine which models to run concurrently to minimize inter-
model GPU memory interference. Zhang et al. [38] proposed a peri-
odic planner that aggregates request streams into moderately-sized
groups for high utilization and an online scheduler that employs
a novel online algorithm to provide guaranteed SLO fulfillment.
However, none of these methods focus on executing both retraining
and inference of the models in the same server.

8 CONCLUSION
Edge servers are widely used to serve inference requests of multi-
model applications with tight SLOs. The applications suffer from
data drift and hence the models need to be retrained periodically
but it causes resource contention, impacting accuracy and SLO ful-
fillment. To handle this, based on our experimental analysis, we pro-
pose AdaInf which generates data drift-aware retraining-inference
DAGs, allocates GPU space and time based on data drift awareness,
and minimizes CPU-GPU memory communication. Our experimen-
tal evaluations demonstrate that AdaInf achieves up to 21% higher
accuracy, reduces latency SLO violation by up to 54%, and achieves
4× higher resource efficiency compared to existing methods. We
plan to study how to balance the workloads of retraining and in-
ference serving tasks among multiple edge servers in the future.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers and our shepherd,
Ganesh Ananthanarayanan, for their invaluable feedback. This
research was supported in part by U.S. NSF grants NSF-1827674,
NSF-2206522, NSF-1822965, FHWA grant 693JJ31950016, Microsoft
Research Faculty Fellowship 8300751, and Commonwealth Cyber
Initiative (CCI), an investment in the advancement of cyber re-
search, innovation and workforce development. For more informa-
tion about CCI, please visit cyberinitiative.org.

484



AdaInf: Data Drift Adaptive Scheduling for Multiple-Model Inference Serving at Edge Servers ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

REFERENCES
[1] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. {MArk}: Exploiting

cloud services for {Cost-Effective},{SLO-Aware} machine learning inference
serving. In Proc. of ATC, 2019.

[2] Darek Fanton. Edge server. https://www.onlogic.com/company/io-hub/what-
are-edge-servers/, 2021.

[3] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. Ekya:
Continuous learning of video analytics models on edge compute servers. In Proc.
of NSDI, 2022.

[4] Enrique Saurez, Harshit Gupta, Alexandros Daglis, and Umakishore Ramachan-
dran. Oneedge: An efficient control plane for geo-distributed infrastructures. In
Proc. of SoCC, 2021.

[5] Viyom Mittal, Shixiong Qi, Ratnadeep Bhattacharya, Xiaosu Lyu, Junfeng Li,
Sameer G Kulkarni, Dan Li, Jinho Hwang, KK Ramakrishnan, and Timothy
Wood. Mu: an efficient, fair and responsive serverless framework for resource-
constrained edge clouds. In Proc. of SoCC, 2021.

[6] Mickael Cormier, Aris Clepe, Andreas Specker, and Jürgen Beyerer. Where are
we with human pose estimation in real-world surveillance? In Proc. of IEEE/CVF
Winter Conference on Applications of Computer Vision, 2022.

[7] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[8] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. icarl: Incremental classifier and representation learning. In Proc. of
CVPR, 2017.

[9] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey:
Defying forgetting in classification tasks. IEEE transactions on pattern analysis
and machine intelligence, 44(7), 2021.

[10] Yitao Hu, Rajrup Ghosh, and Ramesh Govindan. Scrooge: A cost-effective deep
learning inference system. In Proc. of SoCC, 2021.

[11] Xiao Zeng, Biyi Fang, Haichen Shen, and Mi Zhang. Distream: scaling live video
analytics with workload-adaptive distributed edge intelligence. In Proc. of SenSys,
2020.

[12] Zhihao Bai, Zhen Zhang, Yibo Zhu, and Xin Jin. {PipeSwitch}: Fast pipelined
context switching for deep learning applications. In Proc. of OSDI, 2020.

[13] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning.
In Proc. of SC, 2021.

[14] Guanhua Wang, Kehan Wang, Kenan Jiang, Xiangjun Li, and Ion Stoica. Wavelet:
Efficient dnn training with tick-tock scheduling. Proc. of MLSys, 2021.

[15] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang,
and Xuehai Qian. Capuchin: Tensor-based gpu memory management for deep
learning. In Proc. of ASPLOS, 2020.

[16] Xiaonan Nie, Xupeng Miao, Zhi Yang, and Bin Cui. Tsplit: Fine-grained gpu
memory management for efficient dnn training via tensor splitting. In Proc. of
ICDE, 2022.

[17] Ammar Ahmad Awan, Ching-Hsiang Chu, Hari Subramoni, Xiaoyi Lu, and
Dhabaleswar K Panda. Oc-dnn: Exploiting advanced unified memory capabilities
in cuda 9 and volta gpus for out-of-core dnn training. In Proc. of HiPC, 2018.

[18] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos Kozyrakis.
{INFaaS}: Automated model-less inference serving. In Proc. of ATC, 2021.

[19] Twitter. Twitter streaming traces. https://archive.org/details/archiveteam-
twitter-stream-2018-04, 2018.

[20] Bent Fuglede and Flemming Topsoe. Jensen-shannon divergence and hilbert
space embedding. In Proc. of ISIT, 2004.

[21] Harshit Daga, Patrick K Nicholson, Ada Gavrilovska, and Diego Lugones. Cartel:
A system for collaborative transfer learning at the edge. In Proc. of SoCC, 2019.

[22] Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. Spinn: synergistic progressive inference of neural networks
over device and cloud. In Proc. of MobiCom, 2020.

[23] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus: A gpu cluster
engine for accelerating dnn-based video analysis. In Proc. of SOSP, 2019.

[24] Rasmus Bro and Age K Smilde. Principal component analysis. Analytical methods,
6(9):2812–2831, 2014.

[25] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. Gandiva: Introspective cluster scheduling for deep learning. In Proc.
of OSDI, 2018.

[26] Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve
model robustness and uncertainty. In ICML, 2019.

[27] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph
Gonzalez, and Alexey Tumanov. Inferline: latency-aware provisioning and scaling
for prediction serving pipelines. In Proc. of SoCC, 2020.

[28] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet
loss for person re-identification. arXiv preprint arXiv:1703.07737, 2017.

[29] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. Sequence to sequence-video to text. In Proc. of
ICCV, 2015.

[30] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose,
Paramvir Bahl, and Michael J Freedman. Live video analytics at scale with
approximation and {Delay-Tolerance}. In Proc. of NSDI, 2017.

[31] Xiaochen Liu, Pradipta Ghosh, Oytun Ulutan, BS Manjunath, Kevin Chan, and
Ramesh Govindan. Caesar: cross-camera complex activity recognition. In Proc.
of SenSys, 2019.

[32] Yao Feng, Fan Wu, Xiaohu Shao, Yanfeng Wang, and Xi Zhou. Joint 3d face
reconstruction and dense alignment with position map regression network. In
Proc. of ECCV, 2018.

[33] Yitao Hu, Weiwu Pang, Xiaochen Liu, Rajrup Ghosh, Bongjun Ko, Wei-Han Lee,
and Ramesh Govindan. Rim: Offloading inference to the edge. In Proc. of IoTDI,
2021.

[34] DeepSpeed. Deepspeed compression library. https://www.deepspeed.ai/
compression/, 2023.

[35] Nvidia. Nvidia multi-process service (mps). https://docs.nvidia.com/deploy/mps/
index.html, 2021.

[36] Nvidia. Nvidia profiling tool. https://developer.nvidia.com/nvidia-system-
management-interface, 2012.

[37] Arthi Padmanabhan, Neil Agarwal, Anand Iyer, Ganesh Ananthanarayanan,
Yuanchao Shu, Nikolaos Karianakis, Guoqing Harry Xu, and Ravi Netravali.
Gemel: Model merging for memory-efficient, real-time video analytics at the
edge. In Proc. of NSDI, 2023.

[38] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and Ion Stoica. {SHEPHERD}:
Serving {DNNs} in the wild. In Proc. of NSDI, 2023.

[39] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. Serving {DNNs} like clockwork: Performance
predictability from the bottom up. In Proc. of OSDI, 2020.

[40] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thinakaran, Bikash
Sharma, Mahmut Taylan Kandemir, and Chita R Das. Cocktail: A multidimen-
sional optimization for model serving in cloud. In Proc. of NSDI, 2022.

[41] Yunseong Kim, Yujeong Choi, and Minsoo Rhu. Paris and elsa: An elastic sched-
uling algorithm for reconfigurable multi-gpu inference servers. In Proc. of DAC,
2022.

[42] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. Chameleon: scalable adaptation of video analytics. In Proc. of SIGCOMM,
2018.

[43] Vinod Nigade, Ramon Winder, Henri Bal, and Lin Wang. Better never than late:
Timely edge video analytics over the air. In Proc. of SenSys, 2021.

[44] Zhou Fang, Dezhi Hong, and Rajesh K Gupta. Serving deep neural networks at
the cloud edge for vision applications on mobile platforms. In Proc. of MMSys,
2019.

[45] Ram Srivatsa Kannan, Lavanya Subramanian, Ashwin Raju, Jeongseob Ahn, Jason
Mars, and Lingjia Tang. Grandslam: Guaranteeing slas for jobs in microservices
execution frameworks. In Proc. of EuroSys, 2019.

[46] Daniel Crankshaw, XinWang, Guilio Zhou, Michael J Franklin, Joseph E Gonzalez,
and Ion Stoica. Clipper: A {Low-Latency} online prediction serving system. In
Proc. of NSDI, 2017.

[47] Seungbeom Choi, Sunho Lee, Yeonjae Kim, Jongse Park, Youngjin Kwon, and
Jaehyuk Huh. Serving heterogeneous machine learning models on {Multi-GPU}
servers with {Spatio-Temporal} sharing. In Proc. of ATC, 2022.

[48] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Cheng Wang, Jian He,
Yong Li, Liping Zhang, Wei Lin, and Yu Ding. Mlaas in the wild: Workload
analysis and scheduling in large-scale heterogeneous gpu clusters. In Proc. of
NSDI, 2022.

[49] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale
preemption for concurrent {GPU-accelerated}{DNN} inferences. In Proc. of
OSDI, 2022.

485

https://www.onlogic.com/company/io-hub/what-are-edge-servers/
https://www.onlogic.com/company/io-hub/what-are-edge-servers/
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://archive.org/details/archiveteam-twitter-stream-2018-04
https://www.deepspeed.ai/compression/
https://www.deepspeed.ai/compression/
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

	Abstract
	1 Introduction
	2 Experimental Analysis
	2.1 Impact of Data Drift on Accuracy
	2.2 Early-Exit Structure for Inference
	2.3 Optimal Request Batch Size
	2.4 GPU Memory Communications

	3 System Design of AdaInf
	3.1 Overview
	3.2 Data Drift-aware Retraining-Inference DAG Generation
	3.3 Data Drift-aware GPU Space and Time Allocation
	3.4 CPU-GPU Memory Communication Minimization

	4 Experimental Setup and Implementation
	5 Performance Evaluation
	5.1 Comparison Results
	5.2 Effectiveness of Each Proposed Method
	5.3 Effect of Parameters

	6 Limitations and Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

