
BREAK: A Holistic Approach for Efficient
Container Deployment among Edge Clouds

Yicheng Feng†, Shihao Shen†, Xiaofei Wang†∗, Qiao Xiang‡,
Hong Xu§, Chenren Xu⋄, Wenyu Wang◦

†Tianjin University, ‡Xiamen University, §The Chinese University of Hong Kong,
⋄Peking University, ◦PPIO Cloud Computing (Shanghai) Co., Ltd.

{yichengfeng, shenshihao, xiaofeiwang}@tju.edu.cn, qiaoxiang@xmu.edu.cn,
hongxu@cuhk.edu.hk, chenren.xu@gmail.com, wayne@pplabs.org

Abstract—Container technology has revolutionized service de-
ployment, offering streamlined processes and enabling con-
tainer orchestration platforms to manage a growing number
of container clusters. However, the deployment of containers in
distributed edge clusters presents challenges due to their unique
characteristics, such as bandwidth limitations and resource con-
straints. Existing approaches designed for cloud environments
often fall short in addressing the specific requirements of edge
computing. Additionally, very few edge-oriented solutions explore
fundamental changes to the container design, resulting in diffi-
culties achieving backward compatibility.

In this paper, we reevaluate the fundamental layer-based struc-
ture of containers. We identify that the proliferation of redundant
files and operations within image layers hinders efficient con-
tainer deployment. Drawing upon the crucial insight of enhancing
layer reuse and extracting benefits from it, we introduce BREAK,
a holistic approach centered on layer structure throughout
the entire container deployment pipeline, ensuring backward
compatibility. BREAK refactors image layers and proposes an
edge-oriented cache solution to enable ubiquitous and shared
layers. Moreover, it addresses the complete deployment pipeline
by introducing a customized scheduler and a tailored storage
driver. Our results demonstrate that BREAK accelerates the
deployment process by up to 2.1× and reduces redundant image
size by up to 3.11× compared to state-of-the-art approaches.

Index Terms—Container deployment, edge clouds, kubernetes

I. INTRODUCTION

Container engines, such as Docker [1] and containerd [2],
have shown their great advantages in standardization, user-
friendliness, and low overhead [3], [4]. The container image,
as a template for a container, is constructed by a series of
layers. Users can package their applications as container by
a standard way and upload them to a registry (e.g,. Docker
hub [5]) for storage or sharing.

Containers need to rely on Container Orchestration Plat-
forms (COPs) in clustered applications. COPs such as Ku-
bernetes (K8s) [6], Docker Swarm [7], Apache Mesos (with
Marathon) [8], are born to better manage the lifecycle of
large-scale containers [9], automating configuration, placement

Thanks to PPIO Cloud Computing (Shanghai) Co., Ltd. for providing the
system platform and original logs. Xiaofei Wang was partially supported
by the NSFC (Grant Nos. 62072332 and 62002260) and in part by the
Tianjin Xinchuang Haihe Lab (Grant No. 22HHXCJC00002). Chenren Xu was
supported by the NSFC (Grant Nos. 62022005, 62272010, and 62061146001).
Qiao Xiang was supported by the NSFC (Grant No. 62022005), the MOE of
China Award (Grant No. 2021FNA02008), and NSF-Fujian-China (Grant No.
2021J05003). Corresponding author: Xiaofei Wang.

(scheduling), scaling, etc. Among them, K8s is dominant, with
96% of organizations using or evaluating it [10].

While container technologies were initially conceived for
cloud data centers [11], they are progressively gaining traction
in edge computing [3], [12], [13]. These smaller, geographi-
cally distributed edge clouds are frequently organized by COPs
as edge clusters within a particular region. Analogous to cloud
data centers, edge clouds employ industry-standard hardware
capable of running virtual machines and containers, thereby
providing containerized services to end-users [14]. Due to
proximity to users, these services reap benefits of reduced
latency, power consumption, and bandwidth utilization [15].
As the edge accommodates a growing number of latency-
sensitive services, the application deployment duration directly
influences the quality of service [16], [17]. Sluggish de-
ployments with elevated latencies may breach responsiveness
Service-Level Agreements (SLAs) [3], [4], [18]. Simultane-
ously, redundancies among container images lead to expensive
transfers, storage, and deployments [4], [18], [19].

Unique characteristics of edge environments pose chal-
lenges for container deployment. (i) Edge clouds may experi-
ence prolonged container image retrieval times from remote
registries due to high-latency upstream links and bandwidth
limitations [3], [13]. (ii) Oscillating network performance and
heterogeneous resources [17], [20] further complicate con-
tainer placement in geographically distributed edge clouds,
impeding deployment. (iii) Given the resource limitations
inherent to edge clouds, cache strategies that rely on storing
entire container images are not cost-effective due to the high
storage overhead they entail.

Prior work, mainly designed for cloud computing [13],
[21], [22], is not well-suited for efficient deployment in edge
clouds. These approaches can be categorized into two types.
The first type, exemplified by FaaSNet [21] and Wharf [23],
involves transferring container images on a large scale at
default network settings, which are not suitable for bandwidth-
constrained edge environments. The second type of solution is
on-demand downloading or lazy-pulling [3], [24], but most of
them cannot adapt to the unstable network latency character-
istics of edge networks [3]. Some of these advanced efforts,
such as Starlight [3], require a specific addressable image
format, which necessitates additional format conversions from
the current standard images, and such formats cannot be stored

FilesystemImage

Parallel

Registry Images

Challenge 1: How to make image layers highly reusable?
Layer refactoring Low-Redundancy Image Refactoring (§III-B)

Challenge 2: How to make cache solution suited for edges?

Layer-level cache

Challenge 3: How to avoid downloading images remotely?
Layer sharing

Challenge 4: How to accelerate the image extraction process?
Parallel extraction

Edge cluster

Master node

Worker nodes

Layer-level
cache

Layer
sharing

Proactive Layer-Level Cache Pre-Fetching (§III-C)

K8s Scheduler for Sharing Cache (§III-D)

Asynchronous Parallel Extraction (§III-E)

Remote cloud

refactoringDownload

IV

I

III

II

extraction

Layer

I

I

II

III

IV

Fig. 1. The challenges of efficiently deploying containers lies in four
optimization dimensions around the layer structure.

in standard repositories. Furthermore, all these options do not
account for a complete deployment pipeline for containers.

Container pulls, encompassing download and extraction
operations, contribute to almost 80% of container deployment
time [25]. We posit that the primary hindrance to efficient con-
tainer deployment is the multiple redundant operations such
as storage, download, extraction performed on individual
files constituting a container image, resulting in deployment
inefficiencies. The root cause of this phenomenon lies in the
large number of redundant files hidden between images layers
and the inefficient reuse of image layers [4], [26], [27].

In this paper, we propose a holistic approach to address
the challenges of container deployment in distributed edge
clusters. Our key insight centers around enhancing image
layer reuse and maximizing its benefits. Importantly, we aim
to improve the container itself without introducing potentially
incompatible designs.

The effectiveness of our approach relies on tackling four
significant challenges (see Figure 1). The first challenge is
how to make image layers highly reusable. At present, most
solutions struggle to balance de-duplication efficiency with
compatibility, with some efforts focused solely on container
registries. We perform image layer refactoring, eliminating
redundant files between different layers. This enables container
engines to reuse these consistent layers, thereby avoiding
redundant storage, downloads, and extraction operations across
the whole pipeline.

Second, how to make cache solution suited for edges? Edge
resources are limited and heterogeneous, necessitating that
both transmission and maintenance at the edge should be
precise and flexible. Given the high-heat trend in container
deployment (Figure 2), we utilize layer-level caching with an
optimization policy to pre-fetch popular layers.

Next, how to avoid high cost remote downloads? Current
K8s schedulers lack the capability for layer-level caching
and are not cognizant of network performance. Given the
limitations of edge networks to download images from remote
clouds, we implement a customized K8s scheduler that facili-
tates collaborative deployment through layer sharing among
geo-nearby edge clouds. This approach enables the retrieval

0 500 1000 1500 2000 2500 3000 3500

100

106

105

104

103

102

101

25

20

15

10

5

0
1 2 3 4 5 6 7 8 9 10

Types of images Date

T
h

e
n

u
m

b
er

 o
f

ti
m

es
 r

eq
u

es
te

d

T
h

e
n

u
m

b
er

 o
f

ti
m

es
 r

eq
u

es
te

d

×104

Top 1% of the most

popular images accounted

for over 50% requests

The number of

requests for the same

image fluctuates

greatly every day

Fig. 2. Distribution of (a) the request number of different image types (left)
and (b) the change in request number for an image over 10 days (right) in
the IBM data [28]. The popularity-varied images serve as evidence to some
extent for the necessity of caching and cache optimization schemes.

of only missing parts from the cloud.
The final challenge is how to accelerate the image extraction

process. The current extracting operation in the image layer
can slow down the deployment speed. However, to our knowl-
edge, contemporary efforts have yet to address the inherent
sequential and synchronous nature of these operations with
compatible optimizations. To overcome this, we introduce a
storage driver that allows the downloading and extraction of
image layers in parallel.

We term these optimized designs as the BREAK ap-
proach, signifying Boosting efficient container deployment
through layer Refactoring, Edge layer-level cache pre-
fetching, Adaptive layer sharing, and quicK layer extracting.
In summary, our contributions are the following:

• We design an image refactoring solution which is back-
wards compatible with current container engines and
standard registries. It optimizes and preserves the con-
venient stack-of-layers structure of images (§III-B).

• We propose a distributed, layer-level cache solution for
layer pre-fetching, enabling cooperative container deploy-
ment by facilitating image layer transfer among geo-
graphically nearby edge clouds (§III-C).

• We develop a customized K8s scheduler which addi-
tionally considers network performance, disk space, and
image layer caches to make appropriate container place-
ments with layer sharing (§III-D).

• We identify the issues associated with current image ex-
traction methods and propose a storage driver that enables
parallel extraction of image layers, while eliminating
redundant operations (§III-E).

We evaluate BREAK by employing 17 commonly-used con-
tainer images, under various scenarios. Our findings indicate
that BREAK performs 2.1× faster than the current state-of-
the-art implementation, on average, while reducing redundant
image size by up to 3.11×. While BREAK is specifically
designed for edge scenarios, its backward-compatible features,
such as image refactoring and extraction acceleration, can also
prove beneficial for cloud computing.

II. RELATED WORK

Container registry. Zhao et al. [29] proposes a solution
for file-level deduplication in the registry after decompressing
the layers, which involves hiding the overhead caused by
reconstructing the compressed layers using a content-aware
cache. Li et al. [26] argue that Docker CAS is limited because

Fig. 3. The architecture of BREAK.

of layer-reuse in not sufficient and propose a reconstruction
algorithm for Docker images in simulation. BREAK removes
redundancy through container image refactoring, providing
benefits not just limited to registry optimization, but also to
other deployment processes. As BREAK’s refactoring is based
on the standard image specification, it has been proven to be
fully compatible with container engines and registries.

On-demand downloading. Slacker [24] utilizes NFS to
enable on-demand downloading of required data when con-
tainers are launched. Nydus [30] employs a file system to pull
the data in chunk granularity, potentially leading to a degra-
dation of native I/O performance. DADI [18] employs on-
demand fetching at the block level, but requires a customized
image format and registry. eStargz [31] and Starlight [3] use
specialized filesystems and snapshotters to facilitate lazy data
retrieval; however, their images require a complete conversion
before use. In contrast, BREAK is designed based on existing
container I/O stack, making it fully compatible.

P2P transmission. Existing solutions for optimizing con-
tainer deployment, such as Wharf [23] and Shifter [32], offer
client-side caching to share image. FaaSNet [21] accelerates
Function-as-a-Service provisioning in datacenters using a tree
of workers, while Dragonfly [33] and Krakenn [34] employ
P2P approaches to reduce registry load in single datacenter
settings. These solutions are designed primarily for cloud
datacenters and do not address edge-specific challenges such
as limited bandwidth and resource constraints. BREAK utilizes
lightweight layer-level caching and P2P interactions among
nearby edge clouds to cater to the unique characteristics of
edge clouds.

III. DESIGN DETAILS

A. BREAK Architecture
Figure 3 illustrates the architecture of BREAK which com-
prised of three basic roles: cloud (server registry), master node
and worker node. A K8s edge cloud cluster typically consists
of several geo-nearby nodes: one master node (at least) and a
number of worker nodes. The former is the controller and the
latter is used to deploy containers. Next, we will describe the
main components in BREAK at a high level.

An image optimizer is primarily responsible for refactoring
container images. It will periodically restructure the container

images in the image registry by detecting redundancy in order
to improve the reuse of image layers.

A scheduler is mainly responsible for: (i) determining the
specific deployment node for the container through calculation
and issuing the deployment event to that node, and (ii)
obtaining a collaborative P2P transmission scheme for the
current deployment within the cluster during the scheduling
process, and notifying all worker nodes.

An agent is responsible for container starting and cache
optimization. It mainly consists of (i) a driver component,
which is used to asynchronously extract local image layers
to start the container as quickly as possible, and (ii) a cache
manager, which optimizes the caching of image layers on the
local node to improve cache hit rates.

BREAK workflow. Firstly, the image optimizer refactors the
container images in the registry to improve the reuse rate of
image layers, thereby accelerating container deployment 1⃝.
This refactoring is periodic and triggered when the redundant
file size of a container image in the registry exceeds a thresh-
old. Both metadata files and image layer contents are modified,
and a temporary copy is created to avoid interruption of image
pulling during the refactoring of a specific image. Additionally,
it synchronizes the metadata of the latest involved containers
to the edge cloud and clears invalid caches 1⃝. When the
scheduler’s watcher detects a new deployment event, it re-
trieves the resource and cache information of the cluster from
the API server and local cache data center, and calculates the
worker node on which the container should be deployed, thus
completing the scheduling process 2⃝. Meanwhile, based on
the distribution of the cluster cache, the scheduler determines
the P2P transmission scheme for image layer to accelerate
image download, which is then notified to the worker nodes
2⃝. The kubelet on the worker node receives the deployment

event and notifies the agent 3⃝. The agent writes the locally
cached layers into the corresponding menu of the container
filesystem through the driver, while asynchronously and in
parallel extracts subsequent image layers from other worker
nodes or registry in the cloud 4⃝. In this process, the cache
manager replaces the local cache in parallel. When all image
layers are extracted, the container is started through runc (a
standard runtime).

B. Low-Redundancy Image Refactoring
Each image layer represents an instruction in the image’s
Dockerfile and can only be shared if two layers are identical.
Despite the current container solution, numerous redundant
files remain unshared. The goal of image refactoring is to
improve layer-level reuse capabilities offered by mainstream
solutions, and achieve close to file-level reuse.

The overall workflow of image refactoring is shown in Fig-
ure 4: Step 1: BREAK generates file metadata for each image
based on its initial structure, which includes basic information
about each file. Using this metadata, BREAK then creates an
image-level merged view by merging the image layers. Step
2: BREAK identifies redundant files between images using the
merged views. Step 3: Based on the redundancy information,

Fig. 4. Overview of container image refactoring.

BREAK divides the files into unique and shared layers. To
optimize the process, Steps 1 and 2 are inferred based on the
file metadata and the actual file manipulation occurs only after
determination in Step 3. The following will be combined with
the example of Figure 5 for a detailed description.

Step 1: Generating file metadata and merged view. In
this step, BREAK generates file metadata for each image
by parallelly iterating through all the files in the image and
collecting the path, name, size, and hash value (SHA 256).
Then, it creates a merged view of the image by merging the
initial layers according to the following methods: (i) If the files
and folders in the lower layer have different paths compared
to the upper layer, they are merged into the upper layer, as
demonstrated by the file x in Figure 5 when image 1 is merged
based on layer 1 and layer 2. (ii) If the paths and names of the
files and folders in the lower layer are the same as the upper
layer, the files and folders in the upper layer overwrite the
lower layer, regardless of their contents, as demonstrated by
file /a/c/f in Figure 5. (iii) BREAK deletes files and folders
marked by ”whiteouts” [35], such as .wh..wh..opq (hide all
children) and .wh.z (hide file z) in Figure5.

Step 2: Determine the shareability of each file based on
the merged view. First, a global key-value table is generated
by iterating through the merged view of all images in parallel.
The key of the table is the hash value of a file and its value
is the list of images that contain that file. Files with the same
value are candidates for sharing and are grouped into a shared
layer, such as file f and file i in Figure 5. Files that are only
contained in one image remain in the unique layer, such as
file x and file q in Figure 5. Finally, the new layer structure of
each image can be inferred based on the file metadata.

Step 3: Refactoring the new layer structure. To optimize
efficiency, BREAK sets two thresholds (user can customize
them as needed): (i) Layer creation threshold λl. To avoid
excessive layer division, a shared layer is created only if its
size sl exceeds the threshold, i.e., sl ≥ λl; otherwise, the
file remains in the unique layer. (ii) Trade-off threshold λa.
Considering the image refactoring cost, the size of the added
reusable files sa needs to be calculated. If sa ≥ λa, the
refactoring process is executed; otherwise, it is abandoned.
If executed, the files selected in Step 2 are processed as in
Figure 5. For example, file f and file i are moved to the
shared path /a/z/ and their original locations are replaced with
symbolic links pointing to the files in /a/z/.

In addition, the native hierarchy faces significant challenges
for images when updating versions [3]. When a new version
of an image is released, typically only a few specific files are
modified, while the majority of files from the operating system,

a

c k

f q

a

p c

d g x

a

p c

f i

Layer 1 Layer 2
a

cp

f x

Image 1

i

① Merge layer file
structure into image

structure

Image n

② Finding redundant
files to construct

shared layers

a File or Directory

i

a
z

f i

Image 1
Unique layer

Image n
Unique layer Shared layer

a
p c

f xi

a
c k

f iq

z z

.wh..wh..opq (hide all children)
a Symbolic Link
z .wh.z (hide file z)

f

Fig. 5. Case study of container image refactoring.

runtime environment, etc. remain unchanged. This results in
high redundancy between old and new versions. Due to the
ability of image refactoring to reorganize the files contained
in each layer, BREAK can move the modified files out of the
shared layer while maintaining its shareability. In this regard,
image refactoring can achieve an almost incremental update
capability for image version iteration, which we will verify
and quantify through experiments.

C. Proactive Layer-Level Cache Pre-Fetching
BREAK is designed to support distributed layer-level cache
sharing and optimization, incorporating several key consider-
ations. Firstly, container images exhibit dynamic heat distri-
bution over time, making caching and optimization a practical
and rational approach. Secondly, the stack-of-layers structure
represents the prevailing standard for container images in the
container I/O stack. Thirdly, caching more fine-grained popu-
lar layers (e.g., the base layer centOS) rather than an entire full
image can lead to increased efficiency, particularly in resource-
constrained edge cloud environments. Fourthly, the utilization
of a layer-level cache allows for the full realization of the
potential of layers after refactoring, resulting in improved layer
reuse. Given the heterogeneous nature of edge clouds, users
can set the caching space size when initiating the custom
scheduler by applying K8s scheduler’s YAML configuration.
Cache separation. In BREAK, image files are cached in
a K8s cluster by separating them into two stores. Firstly,
the master node, which is responsible for decision-making,
caches image configuration metadata in a metadata store.
Secondly, the compressed layer contents are cached in a layer
cache store of worker nodes. These caches are organized
using a menu tree structure. To ensure consistency, worker
nodes periodically synchronize local cache information with
the master node through HTTP. Upon starting or restarting
BREAK, the local menu tree in each worker node is re-read
to confirm consistency with the cache information.
Cache optimization. BREAK’s caching algorithm, called
ARC-LB (layer-based), is implemented based on the Adap-
tive Replacement Cache (ARC) algorithm [36]. It takes into
consideration the size attribute of each image layer and ensures
that the total size of the replaced layer is greater than or equal
to the replacement layer during cache replacement.

ARC-LB keeps track of both recently and frequently used
layers and adapts to changing access patterns. Initially, the
cache space in each edge cloud gradually fills up with image
layers pulled from the registry. Once the cache space is full,
more frequently and recently used layers are prioritized as
caches, and some of the used layers are replaced to free up
space. 1 If a layer cache hits a container deployment event, the
replacement and update of that layer cache will be postponed
to prevent unnecessary additional pulling operations.
Collaborative deployment protocol. In BREAK, shared
caches are transferred using a P2P approach among geo-nearby
edge clouds, 2 enabling cooperative container deployment. To
coordinate HTTP communication among the edge clouds and
the registry, we design a deployment protocol shown in Fig-
ure 6. When a deployment request is invoked, the master node
first issues the deployment event to the binding node selected
as the host node for deployment (step I-1). The Kubelet in
the binding node polls the image service (in containerd) to
check if the requested image exists. Meanwhile, the master
node sends the BREAK deployment manifest (BDM), which
is the collaborative transfer solution, to the edge clouds (step
I-2.1). The binding node also receives the image metadata for
deployment (step I-2.2). According to the BDMs, peers send
layers to the binding node (step I-3.1). If necessary, the binding
node fetches layers from the registry (step I-3.2). Finally, the
binding node sends back the deployment result and cache
update to the master node (step I-4).

Master node Binding node Registry
Peer

(worker node)

I-1: issue deployment event

I-2.1: send

BDM

I-2.2: send BDM

& metadata

I-3.1: push layer I-3.2: fetch layer

I-4: back deployment result

& cache update

Solution

notify

Layer

transfer

Fig. 6. Collaborative deployment protocol.

D. K8s Scheduler for Sharing Cache
As shown in Figure 7, we take advantage of the prior open-
source practice [41] to implement the customized K8s sched-
uler, which comprises of a scheduling module for container
placement and an orchestration module for generating collab-
orative transfer solutions.

Scheduling module. In K8s, container deployment events are
triggered through the original CLI command by users, e.g.,
”kubectl apply service.yaml”. Once the event is created, the
K8s API Server notifies BREAK’s customized scheduler for

1 This is different from K8s default policy (i.e., garbage-collection [37])
which only focuses on local disk space without a clear cache definition.

2 Our analysis, conducted on 10,000 edge clouds in the wild [38]–[40],
reveals that geo-nearby edge clouds offer approximately three times the
upstream bandwidth compared to remote ones, presenting additional potential
for utilization.

Scheduling

module

Orchestration

module

Registry

Trans
layers

kubectl apply service.yaml

Geo-nearby
edge clouds

The binding
edge cloud

Customized scheduler

Pull
layers

Users

Notify

key info

Generate BDMsMuti-staged scheduling

Fig. 7. The workflow of BREAK’s scheduler.

container scheduling. The native scheduling stream follows
four steps: sorting, filtering, scoring, and binding. It relies on
a set of plugins, and the node with the highest score is selected
as the binding edge node for deploying in one turn.

In the scheduling module, we retain the primary multi-
staged design of the native scheduler. However, we introduce
modifications and extensions to four plugins for the scheduler:
(i) Network performance, (ii) Layer locality, (iii) Resources
balanced allocation and (iv) Least requested priority. All these
plugins are assigned a default weight of 1 and can be adjusted
by users as needed.

The Network performance plugin is aimed at making the
scheduler network-aware. It calculates the network perfor-
mance score Pi,net of node ni (where n represents the total
number of edge nodes in the K8s cluster) based on the
upstream bandwidth bi,avg and round-trip time ri,avg obtained
from BREAK’s exclusive measurement pod. Let vi,b and
vi,r denote the ranking of bi,avg and ri,avg in the clusters,
respectively, and λn be the constant factor for controlling the
score scope. Therefore, Pi,net can be derived using (1) as
follows:

Pi,net = λn/n · (2n− vi,b − vi,r + 2) (1)
For edge nodes, disk over-occupation can significantly im-

pact the node’s stability. Therefore, we have introduced the
ephemeral storage metric, which considers container storage
usage, into both the Resources balanced allocation and Least
requested priority plugins. Let cpui,o and cpui,c represent the
occupied CPU and the capacity CPU of edge node ni, respec-
tively, and rami,o, rami,c represent the memory resources,
and diski,o, diski,c represent the disk storage. Consequently,
we define the score of the Resources balanced allocation
plugin as Pi,bal in (2), and Pi,pri, representing the score of
the Least requested priority plugin, is shown in (3). Similarly,
λb and λp are the constant factors for scope control.

Pi,bal = λb −
(∣∣∣∣cpui,o

cpui,c
− rami,o

rami,c

∣∣∣∣+ ∣∣∣∣cpui,o

cpui,c
− diski,o

diski,c

∣∣∣∣
+

∣∣∣∣rami,o

rami,c
− diski,o

diski,c

∣∣∣∣ / 3

)
· λb

(2)

Pi,pri =

(
cpui,c − cpui,o

cpui,c
+

rami,c − rami,o

2 · rami,c

+
diski,c − diski,o

10 · diski,c

)
· λp

(3)

time

time

Parallel

task

Parallel

task

Finished time

metadata.db

snapshots/ 100 (layer a)

101 (layer b)

102 (layer c)

103 (layer b)

104 (layer c)

100 (layer a)

101 (layer b)

102 (layer c)

103 (layer b)

104 (layer c)

Hard

link

Content Dir

layer a

layer b

layer c

Download Dir

unpack

layers

containerd BREAK

Image 1 Image 2

Image pull (first 1 then 2)

Redundant layer

layer a

layer b

layer c

layer a

layer b

layer c

layer …

b

c

…

b c …layer a

layer a

BREAK

containerd

Finished time

Extracting start time

Extracting start time

layer …

Extracting layer

Downloading layer

（a） （b）

Fig. 8. Comparison of containerd and BREAK’s layer extraction. In containerd, layer extraction operations are dependent on the completion of the download
operation, resulting in a sequential process. In contrast, BREAK enables concurrent downloads and extractions, effectively decoupling the sequential loading
of layers. Additionally, BREAK facilitates hard-linking of identical layers (read-only layer sections), leading to a reduction in redundant extraction operations.

To better accommodate BREAK’s layer-level operation,
we have replaced the native Image locality plugin with a
more fine-grained Layer locality plugin, which considers layer
cache. The score Pi,lay = pi,hit + η · pi,ava describes the
metrics of the proportion of hitting layer size pi,hit and the
current available cache space pi,ava of node ni. These can be
calculated by:

pi,hit = λl · (qi − θmin) / (θmax − θmin) (4)

pi,ava = (cachei,c − cachei,o) / cachei,c (5)

where θmin and θmax are thresholds of the sum of hitting
layer caches pi,hit (the value of qi is reassigned when it
exceeds the thresholds), and λl is the constant factor. Here,
cachei,c and cachei,o represent the capacity and the occupied
cache space of edge node ni. Note that pi,ava is designed to
avoid node heating problems [42], enabling containers to be
more evenly distributed across the cluster (meeting robustness
requirements) and fully utilizing each node’s cache space. In
general, the larger the value of Pi,lay, the more cache layers
are hit, and the richer the cache space becomes.

Based on the scores from each plugin, we calculate the final
score Pi of node ni as follows:
Pi =

∑
k∈K

ωk · Pi,k

= ωnet · Pi,net + ωbal · Pi,bal + ωpri · Pi,pri + ωlay · Pi,lay + · · ·
(6)

where K is the set of plugins, and ωk represents the cor-
responding weight of plugin k. BREAK’s scheduler can be
deployed as a containerized component in K8s through con-
figuration, allowing users to customize the weight for each
plugin by changing the factors of the scheduler module in the
configuration.3

The node with the highest score will be selected as the
binding node to which the deployment is issued. Addition-
ally, the module notifies the orchestration module about the
binding node and the network performance of cluster nodes.
Subsequently, the deployment event is issued to the Kubelet
of the binding node.
Orchestration module. The orchestration module is designed
based on the collaborative deployment protocol (§III-C). When

3 We have retained the K8s weighted approach to calculating scores, making
extensions to the native plugin backward compatible. Empirically, we take the
K8s default value of 10 for the λ constant factor.

a deployment event occurs, the orchestration module first
confirms whether the container is cached in the edge cloud
cluster based on the application YAML configuration submit-
ted by users. A cooperative transfer solution for deployment is
generated based on (i) the metadata from the metadata store or
pulling from remote registry and (ii) the information notified
by the scheduling module. In particular, the orchestration
module creates and issues BDMs, which include transfer tasks
for each edge node. The module gives preference to the node
with good network performance for layer transfer.

For instance, if the binding node ”node1” needs ”layer1”
to rebuild the container image, the module informs ”node2”
– an edge cloud in the cluster who caches ”layer1” with
good network performance – to push the layer to ”node1”.
If the required ”layer1” is not available in the cluster or if all
other node networks are performing poorly, ”node1” will be
informed to request it from the registry server via the registry
REST API. To avoid costly round-trip requests, BDMs are
pushed by the master node rather than the binding node. For
practical purposes, the default concurrent upload connections
setting number is 3, which can be changed as needed.

E. Asynchronous Parallel Extraction
Extraction of image content from a tarball into the local
filesystem is facilitated by a storage driver. However, current
drivers such as Docker’s Overlay2 and containerd’s snapshot-
ter have limitations that hinder their efficiency.

Firstly, image layers must be extracted in the order of the
image structure, and in the case of containerd’s snapshotter,
extraction is delayed until after the download completes. Sec-
ondly, the layer content cannot be efficiently reused because
these drivers calculate the chainID [43] in real-time, which
is a SHA256 value that combines one layer’s content and
all its parent layers to indicate the layer’s unique identity in
container. This process is time-consuming for image layers
that will be mounted as read-only levels, leading to redundant
extraction operations.
Design expectation. To enhance the extraction performance,
we propose the BREAK driver, which is built on the Docker
graph-driver plugin SDK and Docker Overlay2 driver. It
preserves the advantages of Docker Overlay2, such as the
ability to mount layers, while improving the extraction process.

As shown in Figure 8, our design aims to initiate image

OverlayFSOverlayFSOverlayFS

BREAK driver

proxy

VFS

ext4network

container

user space

kernel space

container container

a bc d e f

mountinform

Fig. 9. BREAK’s storage driver workflow.

extraction earlier, allowing it to overlap with the download pro-
cess. We achieve this by extracting each layer asynchronously
and concurrently. Furthermore, we enable the reuse of layer
content, which is achieved by calculating the chainID in
advance, rather than in real-time during extraction.

Workflow analysis. To better illustrate the advantages of
our BREAK driver in image extraction, we provide a specific
description in Figure 9. To start the container quickly, once
the image configuration metadata is received on the binding
node (determined by the scheduler), BREAK driver initializes
a series of filesystem menus for this container image based
on the metadata files a⃝ b⃝. This is different from the original
Overlay2 driver as BREAK driver decouples image metadata
writes from image layer content writes, allowing the extraction
of images to be done in any order without disrupting the union
mounting of the image layers, which still considers the original
order of layers obtained from the configuration metadata.

BREAK driver first writes the metadata, including imagedb,
distribution, layerdb, repositories, etc., and then writes the
contents of the existing layers to the filesystem menu. This
is designed because the image configuration metadata, which
is probably only a few KB in size, can be received faster
than the layer contents. The required layer contents, in the
best scenario, are already in the local filesystem (e.g., ext4) as
maintained cache, otherwise they will be downloaded by the
proxy (an auxiliary component designed for BREAK dirver).
Once the proxy has downloaded and decompressed new layer
tarballs c⃝ d⃝, it informs the BREAK driver to move these
read-only layers to the corresponding lower directories a⃝ b⃝.

Although BREAK driver still retains the concept of chainID,
it uses diffID (SHA256 value of layer uncompressed content)
to retrieve the identity of layer contents in directories. This
helps to reuse layers with different chainIDs but consistent
content by creating hard links, avoiding meaningless extrac-
tion. All these files in OverlayFS can be returned to the
container instance e⃝ f⃝. If any changes are made to files
metadata and content by the container instance, these files
will be copied from the read-only layer to the read-write layer,
where subsequent requests are forwarded.

Lazy-pulling option. For many containerized applications
that do not need to read all layers immediately, BREAK’s
extraction mechanism supports them with an option to fetch in
a lazy way. Similarly like work [44], by preparing a boot layer
which contains the minimum files needed for container startup,
BREAK can also start the container early potentially and

extracts other requested layers asynchronously and in parallel
while blocking files access until notified of completion.

IV. EVALUATION

In this section, we conduct a comprehensive evaluation of
BREAK, focusing on the (i) effectiveness of the refactoring
solution (§IV-B), the (ii) performance of the layer-level cache
solution (§IV-C), the (iii) comparison of the customized K8s
scheduler (§IV-D), the (iv) improvements brought by the
storage driver (§IV-E), and (v) BREAK’s adaptability under
various edge network environments (§IV-F).

A. Experimental Setup
Testbed setup. Our testbed consists of four edge cloud
clusters (each with 1 master node and 4 worker nodes) and
a registry server. Each worker node is equipped with 2 cores
(vCPUs, 2.20GHz Intel Xeon E5-2630) and 4GB RAM, while
the master node and registry server are configured with 4
vCPUs and 8GB RAM. The release of K8s v1.24.10 is
deployed on clusters and Docker Registry2.0 v2.8.1 is chosen
as the standard registry on the registry server. All the machines
run Ubuntu 20.04.3 LTS. To control the bandwidth and Round-
Trip Time (RTT) of the edge cloud cluster and registry server,
we use the Linux Traffic Control (TC) tool [45]. The network
bandwidth ceiling is limited to 500Mbps and the RTT is set
to 15ms within one edge cloud cluster.
Containers and workloads. In our evaluation of BREAK, we
consider a set of 17 popular official images from the Docker
Hub [5] with a total size of 5.96GB. To ensure real-world
relevance, we use a workload dataset from IBM [28] for our
experiments. Specifically, the ”timestamp” in the dataset is
taken as the request arrival time, and the ”http.request.uri” is
considered as the container type.

B. Refactoring Effectiveness
We first verify the effect of image refactoring on version
updates based on 17 popular official images from the Docker
Hub. The average of shareable files (files can be reused) is only
5.71% (see Table I). It means that in version updates without
image refactoring, most image layers need to be reacquired.

Image name 1.python 2.golang 3.openjdk 4.ubuntu 5.memcached

6.httpd 7.mysql 8.mariadb 9.redis 10.postgres 11.rabbitmq

12.registry 13.wordpress 14.ghost 15.node 16.flink 17.cassandra

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Image name (corresponding to table above)

0

75

50

25

S
h

a
re

a
b

le
 f

il
es

 (
%

)

Before refactoring

After refactoring

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Image name (corresponding to table above)

0

200

400

600

800

S
iz

e
(M

B
)

4000

4500

5000

5500

ALL

S
iz

e
(M

B
)

All images

Before refactoring

After refactoring Unique layer before refactoring

Shared layer before refactoring

Unique layer after refactoring

Shared layer after refactoring

Fig. 10. Names of images involved (top), impact of refactoring on image size
(middle), and percentage of shareable files (bottom).

TABLE I
ANALYSIS ON THE PERCENTAGE OF SHAREABLE FILES FOR IMAGE VERSION UPDATES.

Image Version Before
refactoring

After
refactoring Image Version Before

refactoring
After

refactoring
Python 3.9.3 → 3.9.4 0 % 97.54 % Postgres 13.1 → 13.2 0 % 98.12 %
Golang 1.16.2 → 1.16.3 0 % 97.94 % Rabbitmq 3.8.13 → 3.8.14 0 % 98.84 %

Openjdk 11.0.11-9-jdk →
11.0.12-jdk 0 % 98.62 % Registry 2.7.0 → 2.7.1 0 % 98.97 %

Ubuntu focal-20210401 →
focal-20210416 0 % 98.93 % Wordpress php7.3-fpm →

php7.4-fpm 0 % 98.30 %

Memcached 1.6.8 → 1.6.9 0 % 96.22 % Ghost 3.42.5-alpine →
3.42.6-alpine 1.42 % 86.21 %

Httpd 2.4.41 → 2.4.43 0 % 97.05 % Node
16.19-alpine3.16

→
16.19-alpine3.17

0 % 98.21 %

Mysql 8.0.23 → 8.0.24 24.79 % 99.23 % Flink 1.12.3 → 1.12.4 0 % 99.08 %
Mariadb 10.5.8 → 10.5.9 0 % 98.96 % Cassandra 3.11.9 → 3.11.10 0 % 97.80 %

Redis 6.2.1 → 6.2.2 70.85 % 97.01 % Average / 5.71 % 97.47 %

But in fact, a large part of these files still duplicate hidden in
different layers. Under the current naive container mechanism,
unfortunately, even a minor change to a single layer would
cause the entire layer to lose the capability to share. In
response, BREAK achieves near-incremental version update
capability by optimizing the files contained in each layer, with
an average shared file of 97.47%. This provides a solution to
maintain compatibility while enabling incremental updates.

In addition to different versions of the same image, we also
quantify the ability of image refactoring to remove redundancy
between different images. In Figure 10, we compare the total
storage size of 17 container images in the registry. After
refactoring, BREAK effectively reduces the redundant size
of images by up to 3.11×. Note that BREAK’s container
image refactoring not only reduces image storage space in
the registry, but also benefits from a series of deployment
processes such as download and load while retaining the
container key design of the stack-of-layers structure.

C. Cache Analysis
Next, we analyze the behavior of BREAK’s distributed shared
cache. First, to get the performance of BREAK’s cache algo-
rithm ARC-LB, we show its hit ratio (including local hit ratio
and edge hit ratio) compared to two popular cache algorithms
LRU [46] and LFU [36] under different number of worker
node in the edge cloud cluster in Figure 11 (a).

The local hit ratios of ARC-LB are the highest at 0.16, 0.24,

1 53 10 1 53 10 1 53 10
0

ARC-LB LFU LRU

10

60

50

40

30

20

T
h

e
p

er
ce

n
ta

g
e

o
f

d
at

a
si

ze
 o

f

ca
ch

e
h

it
s

to
 t

h
e

to
ta

l
d

at
a

(%
)

Edge hit

The number of worker nodes in the edge cloud cluster

Homogeneity Heterogeneity

101 102 103 101 102 103T
h

e
p

er
ce

n
ta

g
e

o
f

d
at

a
si

ze
 o

f

ca
ch

e
h

it
s

to
 t

h
e

to
ta

l
d

at
a

(%
)

T
h

e
p

er
ce

n
ta

g
e

o
f

d
at

a
si

ze
 o

f

ca
ch

e
h

it
s

to
 t

h
e

to
ta

l
d

at
a

(%
)

10

0

80

70

60

50

40

30

20

10
0

60

50

40

30

20

Local hit

Total hit

Local hit

Edge hit

Cache size (MB) Cache size (MB)

80

70

Fig. 11. Performance comparison of (a) different cache algorithms (top) and
(b) different cache size (bottom).

0.22 and 0.18, respectively. This means that ARC-LB shows
a better optimization ability. Compared to others, ARC-LB
maintains two lists at the same time, an LFU list and an LRU
list, and adaptively balances them to increase the hit ratio.

For different number of working nodes, the edge hit ratio
(i.e., that image layer is cached on other worker nodes rather
than the local node) is the highest for ARC-LB in most cases,
indicating that the algorithm effectively optimizes the total
cache distribution in the cluster.

BREAK supports custom size cache space set by the user
for worker nodes. In Figure 11(b), we compare the ARC-
LB hit ratio of a cluster (with 10 worker nodes) under cache
homogeneous distribution (i.e., each node has the same cache
size) with heterogeneous distribution (conforming to an equal
distribution) under three different cache sizes. In general, the
cache has a higher total hit rate in the homogeneous case.
When the cache size is 1000M, it is 17.57% higher than the
heterogeneous case.

In addition, we find that at a cache of 1000M, the local hit
rate is much higher than the edge hit rate in the homogeneous
case compared to the heterogeneous case. This implies that
ARC-LB achieves better optimization of the cache for local
nodes in the homogeneous case.

D. Scheduler Comparison
To verify the performance of BREAK’s scheduler, we com-
pare the scheduler with two state-of-the-art methods: the K8s
default scheduler baseline [47] and NetMARKS [48]. The base-
line considers node resource balance, complete image cache,
etc. NetMARKS leverages Istio Service Mesh [49] to select
the most bandwidth-rich nodes for container deployments. We
set the cache size of worker nodes to vary from 0% to 25%
of the workload dataset size (i.e., the percentage of top in
Figures 12 and 14) and run the experiments in the BREAK
architecture with only the scheduler replaced.

Figure 12 shows the performance of different schedulers
in terms of deployment time. As the cache size increases,
all deployment time decreases to some extent (shown as
downward aggregation in the graph). However, NetMARKS
shows the least significant change because it does not take
into account node caching. Even though the baseline takes
into account the cache situation, it is only full image aware

BREAKBaseline NetMARKS0

50

40

30

20

10

0

50

40

30

20

10

0 % 5 %

15 % 25 %

Im
a
g
e

d
ep

lo
y

m
e
n

t
 t

im
e

(s
ec

o
n

d
)

BREAKBaseline NetMARKS

Fig. 12. Analysis of the deployment time distribution of images by different
schedulers under different cache sizes.

and is not aware of the hotness layer of the cache. Compared
to others, BREAK’s scheduler takes into account not only the
network conditions of the nodes, but also the more granular
cache layer – it is implemented more like an enhanced version
of baseline combined with NetMARKS. As a result, BREAK’s
scheduler achieves the fastest container deployment.

E. Extraction Performance
In our evaluation of image extraction, we consider 17 different
images as depicted in Figure 10. As shown in Figure 13 (a), the
average extraction time for these images using containerd is
2.941 seconds. Since the extraction phase in containerd needs
to be executed sequentially layer by layer only after all the
layers in the image have been downloaded, this significantly
increases the time consumption.

In contrast, as shown in Figure 13 (b), the average extraction
time for BREAK is 0.599 seconds, which is 4.9× faster
than the native solution. BREAK enables disordered layer
extraction, meaning that extraction can be performed as soon
as the child layer has finished downloading, even if the parent
layer is still downloading. Additionally, BREAK allows for
parallel loading of different layers, enabling multiple layers to
be extracted simultaneously, instead of sequentially.

containerd

BREAK

0

2

1.5

1

0.5

Image name
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

10

6

4

2

8

E
x
tr

a
c
ti

o
n

 t
im

e
 (

se
co

n
d

)

Fig. 13. Comparison of (a) containerd (top) and (b) BREAK (bottom) at
image extraction time.

F. Deployment Time
The deployment time of containers is the main metric of
interest, defined as the time elapsed from the issuance of the
initial command to deploy a container. We monitor deployment
status by periodically sending pod information requests to
the K8s API Server every 200ms. Three different network
environments are considered: (i) poor: network bandwidth
with 50Mbps ceiling and 200ms RTT (from the edge cloud

Poor Moderate Excellent Poor Moderate Excellent

0

30

20

10

0 % 5 %

15 % 25 %

Im
ag

e
de

pl
oy

m
en

t
tim

e
(s

ec
on

d) Gear
BREAK

Baseline
40

0

30

20

10

40

Fig. 14. Overall performance comparison regarding image deployment time.

to the remote registry); (ii) moderate: network bandwidth
with 100Mbps ceiling and 50ms RTT; (iii) excellent: network
bandwidth with 500Mbps ceiling and 10ms RTT.

We compare BREAK with two state-of-the-art approaches:
the K8s v1.24.10 baseline (with containerd v1.6.4) and
Gear [4]. Gear introduces a new image format and uses a
file-based sharing mechanism to achieve efficient container
deployment. We selected Gear for comparison as, similar to
BREAK, it does not alter the container I/O stack and considers
both the container image storage and pull scenarios, providing
a relatively complete deployment process. However, since
Gear does not integrate with K8s, its consideration of the
full container deployment process is incomplete. To address
this, we made the necessary modifications, such as adding a
scheduling process using the default scheduler of K8s.

Figure 14 presents the average deployment time of contain-
ers as a function of network performance and cache size, based
on the workload dataset described in Section IV-A. The results
indicate that BREAK consistently demonstrates the fastest
deployment time across all network performance and cache
size scenarios. As the cache size increases, BREAK gains
the most from caching, owing to its BREAK’s (i) layer-level
cache granularity, (ii) efficient cache optimization algorithms,
and (iii) a custom scheduler that is aware of layer caches.
BREAK over other solutions is particularly pronounced, with
a deployment time that is 2.1× faster than the baseline and
1.7× faster than Gear. On average, BREAK is 1.4× faster
than the baseline and 1.2× faster than Gear. It is worth noting
that neither removing redundancy nor image caching alone is
sufficient to achieve the level of performance demonstrated by
BREAK, whose effectiveness stems from its overall design.

V. CONCLUSION

This paper presents BREAK, a holistic approach tailored to
enhance container deployment in edge clouds. We introduced
the nascent ideas of BREAK in [50], and this paper signif-
icantly extends and verifies those ideas with transformative
advancements. BREAK incorporates various mechanisms and
components that seamlessly integrate into the pipeline, ensur-
ing backward compatibility. The results indicate that BREAK
significantly accelerates the deployment process, achieving up
to 2.1× faster speed, and effectively reduces redundant image
size by up to 3.11× compared to state-of-the-art methods.

REFERENCES

[1] “Docker: Accelerate how you build, share, and run modern applications,”
https://www.docker.com/.

[2] “Containd: An industry-standard container runtime with an emphasis on
simplicity, robustness and portability,” https://containerd.io/.

[3] J. L. Chen, D. Liaqat, M. Gabel, and E. de Lara, “Starlight: Fast
container provisioning on the edge and over the wan,” in USENIX
Symposium on Networked Systems Design and Implementation, 2022,
pp. 35–50.

[4] H. Fan, S. Bian, S. Wu, S. Jiang, S. Ibrahim, and H. Jin, “Gear: Enable
efficient container storage and deployment with a new image format,”
in International Conference on Distributed Computing Systems, 2021,
pp. 115–125.

[5] “Build and ship any application anywhere,” https://hub.docker.com/.
[6] “Kubernetes: Production-grade container scheduling and management,”

https://github.com/kubernetes/kubernetes.
[7] “Swarm mode overview,” https://docs.docker.com/engine/swarm/.
[8] “Apache mesos,” https://github.com/apache/mesos.
[9] P. Ambati and D. Irwin, “Optimizing the cost of executing mixed in-

teractive and batch workloads on transient vms,” ACM on Measurement
and Analysis of Computing Systems, vol. 3, no. 2, pp. 1–24, 2019.

[10] “Cncf annual survey 2021,” https://www.cncf.io/reports/
cncf-annual-survey-2021/.

[11] “Cloud native computing foundation,” https://cncf.io.
[12] B. Costa, J. Bachiega Jr, L. R. de Carvalho, and A. P. Araujo, “Orches-

tration in fog computing: A comprehensive survey,” ACM Computing
Surveys, vol. 55, no. 2, pp. 1–34, 2022.

[13] S. Fu, R. Mittal, L. Zhang, and S. Ratnasamy, “Fast and efficient
container startup at the edge via dependency scheduling.” in USENIX
Workshop on Hot Topics in Edge Computing, 2020.

[14] P. Lai, Q. He, G. Cui, F. Chen, M. Abdelrazek, J. Grundy, J. Hosking,
and Y. Yang, “Quality of experience-aware user allocation in edge com-
puting systems: A potential game,” in IEEE International Conference
on Distributed Computing Systems, 2020, pp. 223–233.

[15] B. Varghese, E. De Lara, A. Y. Ding, C.-H. Hong, F. Bonomi, S. Dustdar,
P. Harvey, P. Hewkin, W. Shi, M. Thiele et al., “Revisiting the arguments
for edge computing research,” IEEE Internet Computing, vol. 25, no. 5,
pp. 36–42, 2021.

[16] H. Lu, G. Xu, C. W. Sung, S. Mostafa, and Y. Wu, “A game theoretical
balancing approach for offloaded tasks in edge datacenters,” in IEEE
International Conference on Distributed Computing Systems. IEEE,
2022, pp. 526–536.

[17] Y. Feng, S. Shen, M. Xu, Y. Ren, X. Wang, V. C. Leung, and W. Wang,
“Tango: Harmonious management and scheduling for mixed services
co-located among distributed edge-clouds,” in Proceedings of the 52nd
International Conference on Parallel Processing, 2023, pp. 595–604.

[18] H. Li, Y. Yuan, R. Du, K. Ma, L. Liu, and W. Hsu, “Dadi: Block-level
image service for agile and elastic application deployment,” in USENIX
Conference on Usenix Annual Technical Conference, 2020, pp. 727–740.

[19] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis,
A. S. Warke, M. Mohamed, and A. R. Butt, “Large-scale analysis of
the docker hub dataset,” in IEEE International Conference on Cluster
Computing, 2019, pp. 1–10.

[20] M. Xu, Z. Fu, X. Ma, L. Zhang, Y. Li, F. Qian, S. Wang, K. Li, J. Yang,
and X. Liu, “From cloud to edge: a first look at public edge platforms,”
in ACM Internet Measurement Conference, 2021, pp. 37–53.

[21] A. Wang, S. Chang, H. Tian, H. Wang, H. Yang, H. Li, R. Du, and
Y. Cheng, “Faasnet: Scalable and fast provisioning of custom serverless
container runtimes at alibaba cloud function compute,” in USENIX
Annual Technical Conference, 2021.

[22] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Skourtis, A. Warke,
M. Mohamed, and A. Butt, “Slimmer: Weight loss secrets for docker
registries,” in IEEE International Conference on Cloud Computing,
2019, pp. 517–519.

[23] C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed, D. Sk-
ourtis, A. S. Warke, and D. Hildebrand, “Wharf: Sharing docker images
in a distributed file system,” in ACM Symposium on Cloud Computing,
2018, pp. 174–185.

[24] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in
{USENIX} Conference on File and Storage Technologies, 2016, pp.
181–195.

[25] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
European Conference on Computer Systems, 2015, pp. 1–17.

[26] S. Li, A. Zhou, X. Ma, M. Xu, and S. Wang, “Commutativity-guaranteed
docker image reconstruction towards effective layer sharing,” in ACM
Web Conference, 2022, pp. 3358–3366.

[27] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Skourtis,
A. K. Paul, K. Chen, and A. R. Butt, “Large-scale analysis of docker
images and performance implications for container storage systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 4,
pp. 918–930, 2020.

[28] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht, Y. Cheng,
N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig et al., “Improving docker
registry design based on production workload analysis,” in {USENIX}
Conference on File and Storage Technologies, 2018, pp. 265–278.

[29] N. Zhao, H. Albahar, S. Abraham, K. Chen, V. Tarasov, D. Skourtis,
L. Rupprecht, A. Anwar, and A. R. Butt, “Duphunter: Flexible high-
performance deduplication for docker registries,” in USENIX Annual
Technical Conference, 2020.

[30] “Nydus,” https://github.com/dragonflyoss/image-service.
[31] D. Richie, A hundred years of Japanese film: a concise history, with a

selective guide to DVDs and videos. Kodansha International, 2005.
[32] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa,

J. Porter, and V. Tsulaia, “Shifter: Containers for hpc,” in Journal of
physics: Conference series, vol. 898, no. 8. IOP Publishing, 2017, p.
082021.

[33] “What is dragonfly?” https://d7y.io/docs/.
[34] “kraken: A p2p-powered docker registry,” https://github.com/uber/

kraken.
[35] “Image layer filesystem changeset,” https://github.com/opencontainers/

image-spec/blob/main/layer.md#whiteouts.
[36] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead

replacement cache,” in Fast, vol. 3, no. 2003, 2003, pp. 115–130.
[37] “Garbage collection,” https://kubernetes.io/docs/concepts/architecture/

garbage-collection/.
[38] S. Shen, Y. Feng, M. Xu, C. Zhang, X. Wang, W. Wang, and V. C.

Leung, “A holistic qos view of crowdsourced edge cloud platform,” in
2023 IEEE/ACM 31st International Symposium on Quality of Service
(IWQoS). IEEE, 2023, pp. 01–10.

[39] Y. Feng, S. Shen, M. Xu, C. Zhang, X. Wang, X. Wang, W. Wang, and
V. C. Leung, “A large-scale holistic measurement of crowdsourced edge
cloud platform,” World Wide Web, vol. 26, no. 5, pp. 3561–3584, 2023.

[40] “Ppio edge cloud,” https://www.ppio.cn/.
[41] D. Haja, M. Szalay, B. Sonkoly, G. Pongracz, and L. Toka, “Sharpening

kubernetes for the edge,” in ACM SIGCOMM Conference Posters and
Demos, 2019, pp. 136–137.

[42] “Node heating problem,” https://oracle.github.io/
weblogic-kubernetes-operator/faq/node-heating/.

[43] “Chainid,” https://github.com/moby/moby/blob/v23.0.4/layer/layer.go#
L195.

[44] S. Gotanda and T. Shinagawa, “Short paper: Highly compatible fast
container startup with lazy layer pull,” in IEEE International Conference
on Cloud Engineering, 2021, pp. 53–59.

[45] W. Almesberger, “Linux traffic control-implementation overview,” Tech.
Rep., 1998.

[46] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” Acm Sigmod Record, vol. 22,
no. 2, pp. 297–306, 1993.

[47] “kube-scheduler,” https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/.

[48] Ł. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,
T. Kim, and M. Hong, “Netmarks: Network metrics-aware kubernetes
scheduler powered by service mesh,” in IEEE Conference on Computer
Communications, 2021, pp. 1–9.

[49] “service-meshservice-mesh,” https://istio.io/latest/about/service-mesh/
https://istio.io/latest/about/service-mesh/.

[50] Y. Feng, S. Shen, C. Zhang, and X. Wang, “Quicklayer: A layer-stack-
oriented accelerating middleware for fast deployment in edge clouds,”
in Proceedings of the 7th Asia-Pacific Workshop on Networking, 2023,
pp. 74–80.

